549 research outputs found
The newly observed open-charm states in quark model
Comparing the measured properties of the newly observed open-charm states
D(2550), D(2600), D(2750), D(2760), D_{s1}(2710), D_{sJ}(2860), and
D_{sJ}(3040) with our predicted spectroscopy and strong decays in a constituent
quark model, we find that: (1) the assignment to D(2550) remains
open for its too broad width determined by experiment; (2) the D(2600) and
can be identified as the - mixtures; (3) if
the D(2760) and D(2750) are indeed the same resonance, they would be the
; otherwise, they could be assigned as the and
, respectively; (4) the could be either the
's partner or the ; and (5) both the
and interpretations for the seem likely. The
and radiative decays of these sates are also studied. Further
experimental efforts are needed to test the present quarkonium assignments for
these new open-charm states.Comment: 26 pages,7 figures, journal versio
Properties and Performance of Two Wide Field of View Cherenkov/Fluorescence Telescope Array Prototypes
A wide field of view Cherenkov/fluorescence telescope array is one of the
main components of the Large High Altitude Air Shower Observatory project. To
serve as Cherenkov and fluorescence detectors, a flexible and mobile design is
adopted for easy reconfiguring of the telescope array. Two prototype telescopes
have been constructed and successfully run at the site of the ARGO-YBJ
experiment in Tibet. The features and performance of the telescopes are
presented
Magneto-transport and magnetic susceptibility of SmFeAsO1-xFx (x = 0.0 and 0.20)
Bulk polycrystalline samples, SmFeAsO and the iso-structural superconducting
SmFeAsO0.80F0.20 are explored through resistivity with temperature under
magnetic field {\rho}(T, H), AC and DC magnetization (M-T), and Specific heat
(Cp) measurements. The Resistivity measurement shows superconductivity for x =
0.20 sample with Tc(onset) ~ 51.7K. The upper critical field, [Hc2(0)] is
estimated ~3770kOe by Ginzburg-Landau (GL) theory. Broadening of
superconducting transition in magneto transport is studied through thermally
activated flux flow in applied field up to 130 kOe. The flux flow activation
energy (U/kB) is estimated ~1215K for 1kOe field. Magnetic measurements
exhibited bulk superconductivity with lower critical field (Hc1) of ~1.2kOe at
2K. In normal state, the paramagnetic nature of compound confirms no trace of
magnetic impurity which orders ferromagnetically. AC susceptibility
measurements have been carried out for SmFeAsO0.80F0.20 sample at various
amplitude and frequencies of applied AC drive field. The inter-granular
critical current density (Jc) is estimated. Specific heat [Cp(T)] measurement
showed an anomaly at around 140K due to the SDW ordering of Fe, followed by
another peak at 5K corresponding to the antiferromagnetic (AFM) ordering of
Sm+3 ions in SmFeAsO compound. Interestingly the change in entropy (marked by
the Cp transition height) at 5K for Sm+3 AFM ordering is heavily reduced in
case of superconducting SmFeAsO0.80F0.20 sample.Comment: 18 pages text + Figs: comments/suggestions welcome
([email protected]
Structure optimization effects on the electronic properties of BiSrCaCuO
We present detailed first-principles calculations for the normal state
electronic properties of the high T superconductor
BiSrCaCuO, by means of the linearized augmented plane wave
(LAPW) method within the framework of density functional theory (DFT). As a
first step, the body centered tetragonal (BCT) cell has been adopted, and
optimized regarding its volume, ratio and internal atomic positions by
total energy and force minimizations. The full optimization of the BCT cell
leads to small but visible changes in the topology of the Fermi surface,
rounding the shape of CuO barrels, and causing both the BiO bands,
responsible for the pockets near the \textit{\=M} 2D symmetry point, to dip
below the Fermi level. We have then studied the influence of the distortions in
the BiO plane observed in nature by means of a
orthorhombic cell (AD-ORTH) with space group. Contrary to what has been
observed for the Bi-2201 compound, we find that for Bi-2212 the distortion does
not sensibly shift the BiO bands which retain their metallic character. As a
severe test for the considered structures we present Raman-active phonon
frequencies () and eigenvectors calculated within the frozen-phonon
approximation. Focussing on the totally symmetric A modes, we observe
that for a reliable attribution of the peaks observed in Raman experiments,
both - and a-axis vibrations must be taken into account, the latter being
activated by the in-plane orthorhombic distortion.Comment: 22 pages, 4 figure
Mass spectrum of the axial-vector hidden charmed and hidden bottom tetraquark states
In this article, we perform a systematic study of the mass spectrum of the
axial-vector hidden charmed and hidden bottom tetraquark states using the QCD
sum rules, and identify the as an axial-vector tetraquark state
tentatively.Comment: 24 pages, 38 figures, slight revisio
The energy spectrum of all-particle cosmic rays around the knee region observed with the Tibet-III air-shower array
We have already reported the first result on the all-particle spectrum around
the knee region based on data from 2000 November to 2001 October observed by
the Tibet-III air-shower array. In this paper, we present an updated result
using data set collected in the period from 2000 November through 2004 October
in a wide range over 3 decades between eV and eV, in which
the position of the knee is clearly seen at around 4 PeV. The spectral index is
-2.68 0.02(stat.) below 1PeV, while it is -3.12 0.01(stat.) above 4
PeV in the case of QGSJET+HD model, and various systematic errors are under
study now.Comment: 12 pages, 7 figures, accepted by Advances in space researc
The ARGO-YBJ Experiment Progresses and Future Extension
Gamma ray source detection above 30TeV is an encouraging approach for finding
galactic cosmic ray origins. All sky survey for gamma ray sources using wide
field of view detector is essential for population accumulation for various
types of sources above 100GeV. To target the goals, the ARGO-YBJ experiment has
been established. Significant progresses have been made in the experiment. A
large air shower detector array in an area of 1km2 is proposed to boost the
sensitivity. Hybrid detection with multi-techniques will allow a good
discrimination between different types of primary particles, including photons
and protons, thus enable an energy spectrum measurement for individual specie.
Fluorescence light detector array will extend the spectrum measurement above
100PeV where the second knee is located. An energy scale determined by balloon
experiments at 10TeV will be propagated to ultra high energy cosmic ray
experiments
High Altitude test of RPCs for the ARGO-YBJ experiment
A 50 m**2 RPC carpet was operated at the YangBaJing Cosmic Ray Laboratory
(Tibet) located 4300 m a.s.l. The performance of RPCs in detecting Extensive
Air Showers was studied. Efficiency and time resolution measurements at the
pressure and temperature conditions typical of high mountain laboratories, are
reported.Comment: 16 pages, 10 figures, submitted to Nucl. Instr. Met
Moon Shadow by Cosmic Rays under the Influence of Geomagnetic Field and Search for Antiprotons at Multi-TeV Energies
We have observed the shadowing of galactic cosmic ray flux in the direction
of the moon, the so-called moon shadow, using the Tibet-III air shower array
operating at Yangbajing (4300 m a.s.l.) in Tibet since 1999. Almost all cosmic
rays are positively charged; for that reason, they are bent by the geomagnetic
field, thereby shifting the moon shadow westward. The cosmic rays will also
produce an additional shadow in the eastward direction of the moon if cosmic
rays contain negatively charged particles, such as antiprotons, with some
fraction. We selected 1.5 x10^{10} air shower events with energy beyond about 3
TeV from the dataset observed by the Tibet-III air shower array and detected
the moon shadow at level. The center of the moon was detected
in the direction away from the apparent center of the moon by 0.23 to
the west. Based on these data and a full Monte Carlo simulation, we searched
for the existence of the shadow produced by antiprotons at the multi-TeV energy
region. No evidence of the existence of antiprotons was found in this energy
region. We obtained the 90% confidence level upper limit of the flux ratio of
antiprotons to protons as 7% at multi-TeV energies.Comment: 13pages,4figures; Accepted for publication in Astroparticle Physic
Partial Wave Analysis of
BES data on are presented. The
contribution peaks strongly near threshold. It is fitted with a
broad resonance with mass MeV, width MeV. A broad resonance peaking at 2020 MeV is also required
with width MeV. There is further evidence for a component
peaking at 2.55 GeV. The non- contribution is close to phase
space; it peaks at 2.6 GeV and is very different from .Comment: 15 pages, 6 figures, 1 table, Submitted to PL
- …
