2,010 research outputs found
Phonon-drag effects on thermoelectric power
We carry out a calculation of the phonon-drag contribution to the
thermoelectric power of bulk semiconductors and quantum well structures for the
first time using the balance equation transport theory extended to the weakly
nonuniform systems. Introducing wavevector and phonon-mode dependent relaxation
times due to phonon-phonon interactions, the formula obtained can be used not
only at low temperatures where the phonon mean free path is determined by
boundary scattering, but also at high temperatures. In the linear transport
limit, is equivalent to the result obtained from the Boltzmann equation
with a relaxation time approximation. The theory is applied to experiments and
agreement is found between the theoretical predictions and experimental
results. The role of hot-electron effects in is discussed. The importance
of the contribution of to thermoelectric power in the hot-electron
transport condition is emphasized.Comment: 8 pages, REVTEX 3.0, 7 figures avilable upon reques
Binding interaction between (−)-epigallocatechin-3-gallate (EGCG) of green tea and pepsin
Analysis of the binding interaction of (−)-epigallocatechin-3-gallate (EGCG) and pepsin is important for understanding the inhibition of digestive enzymes by tea polyphenols. We studied the binding of EGCG to pepsin using fluorescence spectroscopy, Fourier transform infrared spectroscopy, isothermal titration calorimetry, and protein-ligand docking. We found that EGCG could inhibit pepsin activity. According to thermodynamic parameters, a negative ΔG indicated that the interaction between EGCG and pepsin was spontaneous, and the electrostatic force accompanied by hydrophobic binding forces may play major role in the binding. Data from multi-spectroscopy and docking studies suggest that EGCG could bind pepsin with a change in the native conformation of pepsin. Our results provide further understanding of the nature of the binding interactions between catechins and digestive enzymes
Local disorder and optical properties in V-shaped quantum wires : towards one-dimensional exciton systems
The exciton localization is studied in GaAs/GaAlAs V-shaped quantum wires
(QWRs) by high spatial resolution spectroscopy. Scanning optical imaging of
different generations of samples shows that the localization length has been
enhanced as the growth techniques were improved. In the best samples, excitons
are delocalized in islands of length of the order of 1 micron, and form a
continuum of 1D states in each of them, as evidenced by the sqrt(T) dependence
of the radiative lifetime. On the opposite, in the previous generation of QWRs,
the localization length is typically 50 nm and the QWR behaves as a collection
of quantum boxes. These localization properties are compared to structural
properties and related to the progresses of the growth techniques. The presence
of residual disorder is evidenced in the best samples and explained by the
separation of electrons and holes due to the large in-built piezo-electric
field present in the structure.Comment: 8 figure
Sorption of Eu(III) on Attapulgite Studied by Batch, XPS and EXAFS Techniques.
The effects of pH, ionic strength and temperature on sorption of Eu(III) on attapulgite were investigated in the presence and absence of fulvic acid (FA) and humic acid (HA). The results indicated that the sorption of Eu(III) on attapulgite was strongly dependent on pH and ionic strength, and independent of temperature. In the presence of FA/HA, Eu(III) sorption was enhanced at pH 7. The X-ray photoelectron spectroscopy (XPS) analysis suggested that the sorption of Eu(III) might be expressed as ≡X3Eu0 ≡SwOHEu3+ and ≡SOEu-OOC-/HA in the ternary Eu/HA/attapulgite system. The extended X-ray absorption fine structure (EXAFS) analysis of Eu-HA complexes indicated that the distances of d(Eu-O) decreased from 2.451 to 2.360 Å with increasing pH from 1.76 to 9.50, whereas the coordination number (N) decreased from ~9.94 to ~8.56. Different complexation species were also found for the different addition sequences of HA and Eu(III) to attapulgite suspension. The results are important to understand the influence of humic substances on Eu(III) behavior in the natural environment
Viscoelastic Phase Separation in Shear Flow
We numerically investigate viscoelastic phase separation in polymer solutions
under shear using a time-dependent Ginzburg-Landau model. The gross variables
in our model are the polymer volume fraction and a conformation tensor. The
latter represents chain deformations and relaxes slowly on the rheological time
giving rise to a large viscoelastic stress. The polymer and the solvent obey
two-fluid dynamics in which the viscoelastic stress acts asymmetrically on the
polymer and, as a result, the stress and the diffusion are dynamically coupled.
Below the coexistence curve, interfaces appear with increasing the quench depth
and the solvent regions act as a lubricant. In these cases the composition
heterogeneity causes more enhanced viscoelastic heterogeneity and the
macroscopic stress is decreased at fixed applied shear rate. We find steady
two-phase states composed of the polymer-rich and solvent-rich regions, where
the characteristic domain size is inversely proportional to the average shear
stress for various shear rates. The deviatoric stress components exhibit large
temporal fluctuations. The normal stress difference can take negative values
transiently at weak shear.Comment: 16pages, 16figures, to be published in Phys.Rev.
Variational approximation for mixtures of linear mixed models
Mixtures of linear mixed models (MLMMs) are useful for clustering grouped
data and can be estimated by likelihood maximization through the EM algorithm.
The conventional approach to determining a suitable number of components is to
compare different mixture models using penalized log-likelihood criteria such
as BIC.We propose fitting MLMMs with variational methods which can perform
parameter estimation and model selection simultaneously. A variational
approximation is described where the variational lower bound and parameter
updates are in closed form, allowing fast evaluation. A new variational greedy
algorithm is developed for model selection and learning of the mixture
components. This approach allows an automatic initialization of the algorithm
and returns a plausible number of mixture components automatically. In cases of
weak identifiability of certain model parameters, we use hierarchical centering
to reparametrize the model and show empirically that there is a gain in
efficiency by variational algorithms similar to that in MCMC algorithms.
Related to this, we prove that the approximate rate of convergence of
variational algorithms by Gaussian approximation is equal to that of the
corresponding Gibbs sampler which suggests that reparametrizations can lead to
improved convergence in variational algorithms as well.Comment: 36 pages, 5 figures, 2 tables, submitted to JCG
Process mapping of laser surface modification of AISI 316L stainless steel for biomedical applications
A 1.5-kW CO2 laser in pulsed mode at 3 kHz was used to investigate the effects of varied laser process parameters and resulting morphology of AISI 316L stainless steel. Irradiance and residence time were varied between 7.9 to 23.6 MW/cm2 and 50 to 167 µs respectively. A strong correlation between irradiance, residence time, depth of processing and roughness of processed steel was established. The high depth of altered microstructure and increased roughness were linked to higher levels of both irradiance and residence times. Energy fluence and surface temperature models were used to predict levels of melting occurring on the surface through the analysis of roughness and depth of the region processed. Microstructural images captured by the SEM revealed significant grain structure changes at higher irradiances, but due to increased residence times, limited to the laser in use, the hardness values were not improved
Granular discharge and clogging for tilted hoppers
We measure the flux of spherical glass beads through a hole as a systematic
function of both tilt angle and hole diameter, for two different size beads.
The discharge increases with hole diameter in accord with the Beverloo relation
for both horizontal and vertical holes, but in the latter case with a larger
small-hole cutoff. For large holes the flux decreases linearly in cosine of the
tilt angle, vanishing smoothly somewhat below the angle of repose. For small
holes it vanishes abruptly at a smaller angle. The conditions for zero flux are
discussed in the context of a {\it clogging phase diagram} of flow state vs
tilt angle and ratio of hole to grain size
Evidence for softening of first-order transition in 3D by quenched disorder
We study by extensive Monte Carlo simulations the effect of random bond
dilution on the phase transition of the three-dimensional 4-state Potts model
which is known to exhibit a strong first-order transition in the pure case. The
phase diagram in the dilution-temperature plane is determined from the peaks of
the susceptibility for sufficiently large system sizes. In the strongly
disordered regime, numerical evidence for softening to a second-order
transition induced by randomness is given. Here a large-scale finite-size
scaling analysis, made difficult due to strong crossover effects presumably
caused by the percolation fixed point, is performed.Comment: LaTeX file with Revtex, 4 pages, 4 eps figure
- …
