9 research outputs found
Surface structure and solidification morphology of aluminum nanoclusters
Classical molecular dynamics simulation with embedded atom method potential
had been performed to investigate the surface structure and solidification
morphology of aluminum nanoclusters Aln (n = 256, 604, 1220 and 2048). It is
found that Al cluster surfaces are comprised of (111) and (001) crystal planes.
(110) crystal plane is not found on Al cluster surfaces in our simulation. On
the surfaces of smaller Al clusters (n = 256 and 604), (111) crystal planes are
dominant. On larger Al clusters (n = 1220 and 2048), (111) planes are still
dominant but (001) planes can not be neglected. Atomic density on cluster
(111)/(001) surface is smaller/larger than the corresponding value on bulk
surface. Computational analysis on total surface area and surface energies
indicates that the total surface energy of an ideal Al nanocluster has the
minimum value when (001) planes occupy 25% of the total surface area. We
predict that a melted Al cluster will be a truncated octahedron after
equilibrium solidification.Comment: 22 pages, 6 figures, 34 reference
Research on Computational Independent Model in the Enterprise Information System Development Mode Based on Model Driven and Software Component
Episodic Neoproterozoic extension-related magmatism in the Altyn Tagh, NW China: implications for extension and breakup processes of Rodinia supercontinent
Genesis and tectonic setting of the Late Devonian Tawuerbieke gold deposit in the Tulasu ore cluster, western Tianshan, Xinjiang, China
Microbial Diversity of Mer Operon Genes and Their Potential Rules in Mercury Bioremediation and Resistance
Search for the semi-leptonic decays Λc+→Λπ+π−e+νe and Λc+→pKS0π−e+νe
We search for the semi-leptonic decays Λc+→Λπ+π−e+νe and Λc+→pKS0π−e+νe in a sample of 4.5fb−1 of e+e− annihilation data collected in the center-of-mass energy region between 4.600GeV and 4.699GeV by the BESIII detector at the BEPCII. No significant signals are observed, and the upper limits on the decay branching fractions are set to be B(Λc+→Λπ+π−e+νe)<3.9×10−4 and B(Λc+→pKS0π−e+νe)<3.3×10−4 at the 90% confidence level, respectively
Search for a massless particle beyond the Standard Model in the Σ+ → p + invisible decay
A massless particle beyond the Standard Model is searched for in the two-body decay Σ+→p+invisible using (1.0087±0.0044)×1010 J/ψ events collected at a center-of-mass energy of s=3.097GeV with the BESIII detector at the BEPCII collider. No significant signal is observed, and the upper limit on the branching fraction B(Σ+→p+invisible) is determined to be 3.2×10−5 at the 90% confidence level. This is the first search for a flavor-changing neutral current process with missing energy in hyperon decays which plays an important role in constraining new physics models
