221 research outputs found
Properties and Performance of Two Wide Field of View Cherenkov/Fluorescence Telescope Array Prototypes
A wide field of view Cherenkov/fluorescence telescope array is one of the
main components of the Large High Altitude Air Shower Observatory project. To
serve as Cherenkov and fluorescence detectors, a flexible and mobile design is
adopted for easy reconfiguring of the telescope array. Two prototype telescopes
have been constructed and successfully run at the site of the ARGO-YBJ
experiment in Tibet. The features and performance of the telescopes are
presented
Enhancement of the magnetic anisotropy of nanometer-sized Co clusters: influence of the surface and of the inter-particle interactions
We study the magnetic properties of spherical Co clusters with diameters
between 0.8 nm and 5.4 nm (25 to 7500$ atoms) prepared by sequential sputtering
of Co and Al2O3. The particle size distribution has been determined from the
equilibrium susceptibility and magnetization data and it is compared to
previous structural characterizations. The distribution of activation energies
was independently obtained from a scaling plot of the ac susceptibility.
Combining these two distributions we have accurately determined the effective
anisotropy constant Keff. We find that Keff is enhanced with respect to the
bulk value and that it is dominated by a strong anisotropy induced at the
surface of the clusters. Interactions between the magnetic moments of adjacent
layers are shown to increase the effective activation energy barrier for the
reversal of the magnetic moments. Finally, this reversal is shown to proceed
classically down to the lowest temperature investigated (1.8 K).Comment: 13 figures submitted to Phys. Rev.
The energy spectrum of all-particle cosmic rays around the knee region observed with the Tibet-III air-shower array
We have already reported the first result on the all-particle spectrum around
the knee region based on data from 2000 November to 2001 October observed by
the Tibet-III air-shower array. In this paper, we present an updated result
using data set collected in the period from 2000 November through 2004 October
in a wide range over 3 decades between eV and eV, in which
the position of the knee is clearly seen at around 4 PeV. The spectral index is
-2.68 0.02(stat.) below 1PeV, while it is -3.12 0.01(stat.) above 4
PeV in the case of QGSJET+HD model, and various systematic errors are under
study now.Comment: 12 pages, 7 figures, accepted by Advances in space researc
Characteristics and Sensing Properties of the La1-xNdxCo0.3Fe0.7O3 System for CO Gas Sensors
A series of nanostructured La1-xNdxCo0.3Fe0.7O3 perovskite-type (x ranging from 0 to 1) were prepared using the co-precipitation method. CO gas sensing properties of La1-xNdxCo0.3Fe0.7O3 sensors were performed. La0.7Nd0.3Co0.3Fe0.7O3 sensor showed the highest response at 250 °C (S=52.8)
High Altitude test of RPCs for the ARGO-YBJ experiment
A 50 m**2 RPC carpet was operated at the YangBaJing Cosmic Ray Laboratory
(Tibet) located 4300 m a.s.l. The performance of RPCs in detecting Extensive
Air Showers was studied. Efficiency and time resolution measurements at the
pressure and temperature conditions typical of high mountain laboratories, are
reported.Comment: 16 pages, 10 figures, submitted to Nucl. Instr. Met
The ARGO-YBJ Experiment Progresses and Future Extension
Gamma ray source detection above 30TeV is an encouraging approach for finding
galactic cosmic ray origins. All sky survey for gamma ray sources using wide
field of view detector is essential for population accumulation for various
types of sources above 100GeV. To target the goals, the ARGO-YBJ experiment has
been established. Significant progresses have been made in the experiment. A
large air shower detector array in an area of 1km2 is proposed to boost the
sensitivity. Hybrid detection with multi-techniques will allow a good
discrimination between different types of primary particles, including photons
and protons, thus enable an energy spectrum measurement for individual specie.
Fluorescence light detector array will extend the spectrum measurement above
100PeV where the second knee is located. An energy scale determined by balloon
experiments at 10TeV will be propagated to ultra high energy cosmic ray
experiments
Moon Shadow by Cosmic Rays under the Influence of Geomagnetic Field and Search for Antiprotons at Multi-TeV Energies
We have observed the shadowing of galactic cosmic ray flux in the direction
of the moon, the so-called moon shadow, using the Tibet-III air shower array
operating at Yangbajing (4300 m a.s.l.) in Tibet since 1999. Almost all cosmic
rays are positively charged; for that reason, they are bent by the geomagnetic
field, thereby shifting the moon shadow westward. The cosmic rays will also
produce an additional shadow in the eastward direction of the moon if cosmic
rays contain negatively charged particles, such as antiprotons, with some
fraction. We selected 1.5 x10^{10} air shower events with energy beyond about 3
TeV from the dataset observed by the Tibet-III air shower array and detected
the moon shadow at level. The center of the moon was detected
in the direction away from the apparent center of the moon by 0.23 to
the west. Based on these data and a full Monte Carlo simulation, we searched
for the existence of the shadow produced by antiprotons at the multi-TeV energy
region. No evidence of the existence of antiprotons was found in this energy
region. We obtained the 90% confidence level upper limit of the flux ratio of
antiprotons to protons as 7% at multi-TeV energies.Comment: 13pages,4figures; Accepted for publication in Astroparticle Physic
Are protons still dominant at the knee of the cosmic-ray energy spectrum?
A hybrid experiment consisting of emulsion chambers, burst detectors and the
Tibet II air-shower array was carried out at Yangbajing (4,300 m a.s.l., 606
g/cm) in Tibet to obtain the energy spectra of primary protons and heliums.
From three-year operation, these energy spectra are deduced between
and eV by triggering the air showers associated with a high energy
core and using a neural network method in the primary mass separation. The
proton spectrum can be expressed by a single power-law function with a
differential index of and based on the
QGSJET+HD and SIBYLL+HD models, respectively, which are steeper than that
extrapolated from the direct observations of in the energy
range below eV. The absolute fluxes of protons and heliums are
derived within 30% systematic errors depending on the hadronic interaction
models used in Monte Carlo simulation. The result of our experiment suggests
that the main component responsible for the change of the power index of the
all-particle spectrum around eV, so-called ``knee'', is
composed of nuclei heavier than helium. This is the first measurement of the
differential energy spectra of primary protons and heliums by selecting them
event by event at the knee energy region.Comment: This paper has been accepted for publication Physics Letters B on
October 19th, 2005. This paper has been accepted for publication Physics
Letters B on October 19th, 200
ARGO-YBJ constraints on very high energy emission from GRBs
The ARGO-YBJ (Astrophysical Radiation Ground-based Observatory at YangBaJing)
experiment is designed for very high energy -astronomy and cosmic ray
researches. Due to the full coverage of a large area () with
resistive plate chambers at a very high altitude (4300 m a.s.l.), the ARGO-YBJ
detector is used to search for transient phenomena, such as Gamma-ray bursts
(GRBs). Because the ARGO-YBJ detector has a large field of view (2 sr)
and is operated with a high duty cycle (90%), it is well suited for GRB
surveying and can be operated in searches for high energy GRBs following alarms
set by satellite-borne observations at lower energies. In this paper, the
sensitivity of the ARGO-YBJ detector for GRB detection is estimated. Upper
limits to fluence with 99% confidence level for 26 GRBs inside the field of
view from June 2006 to January 2009 are set in the two energy ranges 10100
GeV and 10 GeV1 TeV.Comment: accepted for publication in Astroparticle Physic
Study of J\psi decaying into \omega p \bar p
The decay is studied using a
event sample accumulated with the BES II detector at the Beijing
electron-positron collider. The decay branching fraction is measured to be
. No
significant enhancement near the mass threshold is observed, and an
upper limit of is determined at the 95% confidence level, where X(1860)
designates the near-threshold enhancement seen in the mass spectrum
in decays.Comment: 5 pages, 4 figure
- …
