727 research outputs found
Quantum anti-Zeno effect without wave function reduction
We study the measurement-induced enhancement of the spontaneous decay (called
quantum anti-Zeno effect) for a two-level subsystem, where measurements are
treated as couplings between the excited state and an auxiliary state rather
than the von Neumann's wave function reduction. The photon radiated in a fast
decay of the atom, from the auxiliary state to the excited state, triggers a
quasi-measurement, as opposed to a projection measurement. Our use of the term
"quasi-measurement" refers to a "coupling-based measurement". Such frequent
quasi-measurements result in an exponential decay of the survival probability
of atomic initial state with a photon emission following each
quasi-measurement. Our calculations show that the effective decay rate is of
the same form as the one based on projection measurements. What is more
important, the survival probability of the atomic initial state which is
obtained by tracing over all the photon states is equivalent to the survival
probability of the atomic initial state with a photon emission following each
quasi-measurement to the order under consideration. That is because the
contributions from those states with photon number less than the number of
quasi-measurements originate from higher-order processes.Comment: 7 pages, 3 figure
Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay
The decay channel
is studied using a sample of events collected
by the BESIII experiment at BEPCII. A strong enhancement at threshold is
observed in the invariant mass spectrum. The enhancement can be fit
with an -wave Breit-Wigner resonance function with a resulting peak mass of
and a
narrow width that is at the 90% confidence level.
These results are consistent with published BESII results. These mass and width
values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
Discriminating Astragali Radix from its adulterants using HPLC coupled with chemometric clustering techniques
Author name used in this publication: Da-Jian YangVersion of RecordPublishe
Observation of CR Anisotropy with ARGO-YBJ
The measurement of the anisotropies of cosmic ray arrival direction provides
important informations on the propagation mechanisms and on the identification
of their sources. In this paper we report the observation of anisotropy regions
at different angular scales. In particular, the observation of a possible
anisotropy on scales between 10 and 30
suggests the presence of unknown features of the magnetic fields the charged
cosmic rays propagate through, as well as potential contributions of nearby
sources to the total flux of cosmic rays. Evidence of new weaker few-degree
excesses throughout the sky region R.A. is
reported for the first time.Comment: Talk given at 12th TAUP Conference 2011, 5-9 September 2011, Munich,
German
Observation of the cosmic ray moon shadowing effect with the ARGO-YBJ experiment
Cosmic rays are hampered by the Moon and a deficit in its direction is expected (the so-called Moon shadow). The Moon shadow is an important tool to determine the performance of an air shower array. Indeed, the westward displacement of the shadow center, due to the bending effect of the geomagnetic field on the propagation of cosmic rays, allows the setting of the absolute rigidity scale of the primary particles inducing the showers recorded by the detector. In addition, the shape of the shadow permits to determine the detector point spread function, while the position of the deficit at high energies allows the evaluation of its absolute pointing accuracy. In this paper we present the observation of the cosmic ray Moon shadowing effect carried out by the ARGO-YBJ experiment in the multi-TeV energy region with high statistical significance (55 standard deviations). By means of an accurate Monte Carlo simulation of the cosmic rays propagation in the Earth-Moon system, we have studied separately the effect of the
geomagnetic field and of the detector point spread function on the observed shadow. The angular resolution as a function of the particle multiplicity and the pointing accuracy have been obtained. The primary energy of detected showers has been estimated by measuring the westward displacement as a function of the particle multiplicity, thus calibrating the relation between shower size and cosmic ray energy. The stability of the detector on a monthly basis has been checked by monitoring the position and the deficit of the Moon shadow. Finally, we have studied with high statistical accuracy the shadowing effect in the ''day/night’’ time looking for possible effect induced by the solar wind
Highlights from the ARGO-YBJ experiment
The ARGO-YBJ experiment at YangBaJing in Tibet (4300 m a.s.l.) has been taking data with its full layout since October 2007. Here we present a few significant results obtained in gamma-ray astronomy and cosmic-ray physics. Emphasis is placed on the analysis of gamma-ray emission from point-like sources (Crab Nebula, MRK 421), on the preliminary limit on the antiproton/proton flux ratio, on the large-scale cosmic-ray anisotropy and on the proton–air cross-section. The performance of the detector is also discussed, and the perspectives of the experiment are outlined
Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay
published_or_final_versio
Measurement of the matrix element for the decay η′→ηπ +π -
The Dalitz plot of η⊃′→ηπ⊃+π⊃- decay is studied using (225.2±2.8)×106 J/ψ events collected with the BESIII detector at the BEPCII e⊃+e⊃- collider. With the largest sample of η⊃′ decays to date, the parameters of the Dalitz plot are determined in a generalized and a linear representation. Also, the branching fraction of J/ψ→γη⊃′ is determined to be (4.84±0.03±0.24)×10⊃-3, where the first error is statistical and the second systematic. © 2011 American Physical Society.published_or_final_versio
- …
