1,089 research outputs found
Resolution of the stochastic strategy spatial prisoner's dilemma by means of particle swarm optimization
We study the evolution of cooperation among selfish individuals in the
stochastic strategy spatial prisoner's dilemma game. We equip players with the
particle swarm optimization technique, and find that it may lead to highly
cooperative states even if the temptations to defect are strong. The concept of
particle swarm optimization was originally introduced within a simple model of
social dynamics that can describe the formation of a swarm, i.e., analogous to
a swarm of bees searching for a food source. Essentially, particle swarm
optimization foresees changes in the velocity profile of each player, such that
the best locations are targeted and eventually occupied. In our case, each
player keeps track of the highest payoff attained within a local topological
neighborhood and its individual highest payoff. Thus, players make use of their
own memory that keeps score of the most profitable strategy in previous
actions, as well as use of the knowledge gained by the swarm as a whole, to
find the best available strategy for themselves and the society. Following
extensive simulations of this setup, we find a significant increase in the
level of cooperation for a wide range of parameters, and also a full resolution
of the prisoner's dilemma. We also demonstrate extreme efficiency of the
optimization algorithm when dealing with environments that strongly favor the
proliferation of defection, which in turn suggests that swarming could be an
important phenomenon by means of which cooperation can be sustained even under
highly unfavorable conditions. We thus present an alternative way of
understanding the evolution of cooperative behavior and its ubiquitous presence
in nature, and we hope that this study will be inspirational for future efforts
aimed in this direction.Comment: 12 pages, 4 figures; accepted for publication in PLoS ON
Urokinase plasminogen activator secreted by cancer-associated fibroblasts induces tumor progression via PI3K/AKT and ERK signaling in esophageal squamous cell carcinoma
published_or_final_versio
Decitabine impact on the endocytosis regulator RhoA, the folate carriers RFC1 and FOLR1, and the glucose transporter GLUT4 in human tumors.
BackgroundIn 31 solid tumor patients treated with the demethylating agent decitabine, we performed tumor biopsies before and after the first cycle of decitabine and used immunohistochemistry (IHC) to assess whether decitabine increased expression of various membrane transporters. Resistance to chemotherapy may arise due to promoter methylation/downregulation of expression of transporters required for drug uptake, and decitabine can reverse resistance in vitro. The endocytosis regulator RhoA, the folate carriers FOLR1 and RFC1, and the glucose transporter GLUT4 were assessed.ResultsPre-decitabine RhoA was higher in patients who had received their last therapy >3 months previously than in patients with more recent prior therapy (P = 0.02), and varied inversely with global DNA methylation as assessed by LINE1 methylation (r = -0.58, P = 0.006). Tumor RhoA scores increased with decitabine (P = 0.03), and RFC1 also increased in patients with pre-decitabine scores ≤150 (P = 0.004). Change in LINE1 methylation with decitabine did not correlate significantly with change in IHC scores for any transporter assessed. We also assessed methylation of the RFC1 gene (alias SLC19A1). SLC19A1 methylation correlated with tumor LINE1 methylation (r = 0.45, P = 0.02). There was a small (statistically insignificant) decrease in SLC19A1 methylation with decitabine, and there was a trend towards change in SLC19A1 methylation with decitabine correlating with change in LINE1 methylation (r = 0.47, P <0.15). While SLC19A1 methylation did not correlate with RFC1 scores, there was a trend towards an inverse correlation between change in SLC19A1 methylation and change in RFC1 expression (r = -0.45, P = 0.19).ConclusionsIn conclusion, after decitabine administration, there was increased expression of some (but not other) transporters that may play a role in chemotherapy uptake. Larger patient numbers will be needed to define the extent to which this increased expression is associated with changes in DNA methylation
The impact of awareness on epidemic spreading in networks
2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Genomic Phenotyping by Barcode Sequencing Broadly Distinguishes between Alkylating Agents, Oxidizing Agents, and Non-Genotoxic Agents, and Reveals a Role for Aromatic Amino Acids in Cellular Recovery after Quinone Exposure
Toxicity screening of compounds provides a means to identify compounds harmful for human health and the environment. Here, we further develop the technique of genomic phenotyping to improve throughput while maintaining specificity. We exposed cells to eight different compounds that rely on different modes of action: four genotoxic alkylating (methyl methanesulfonate (MMS), N-Methyl-N-nitrosourea (MNU), N,N′-bis(2-chloroethyl)-N-nitroso-urea (BCNU), N-ethylnitrosourea (ENU)), two oxidizing (2-methylnaphthalene-1,4-dione (menadione, MEN), benzene-1,4-diol (hydroquinone, HYQ)), and two non-genotoxic (methyl carbamate (MC) and dimethyl sulfoxide (DMSO)) compounds. A library of S. cerevisiae 4,852 deletion strains, each identifiable by a unique genetic ‘barcode’, were grown in competition; at different time points the ratio between the strains was assessed by quantitative high throughput ‘barcode’ sequencing. The method was validated by comparison to previous genomic phenotyping studies and 90% of the strains identified as MMS-sensitive here were also identified as MMS-sensitive in a much lower throughput solid agar screen. The data provide profiles of proteins and pathways needed for recovery after both genotoxic and non-genotoxic compounds. In addition, a novel role for aromatic amino acids in the recovery after treatment with oxidizing agents was suggested. The role of aromatic acids was further validated; the quinone subgroup of oxidizing agents were extremely toxic in cells where tryptophan biosynthesis was compromised.Unilever (Firm)National Cancer Institute (U.S.) (R01-CA055042 (now R01-ES022872))Massachusetts Institute of Technology. Center for Environmental Health Sciences (Grant NIEHS P30-ES002109
Ferroelectric nanofibers with an embedded optically nonlinear benzothiazole derivative
We report measurements of the molecular first hyperpolarizability, thermal stability, photophysical, piezoelectric and ferroelectric properties of a benzothiazole derivative bearing an arylthiophene π-conjugated bridge both in solution and when embedded into a poly (L-lactic acid) (PLLA) matrix in the form of electrospun fibers with an average diameter of roughly 500 nm. The embedded nanocrystalline phenylthienyl-benzothiazole derivative, with crystal sizes of about 1.4 nm resulted in a good piezoelectric response from these functionalized electrospun fibers, indicative of a polar crystalline structure.Fundação para a Ciência e a Tecnologia (FCT
Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation
Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions ; (2) to elucidate the molecular basis of their biological effects ; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation
Measurement of the matrix element for the decay η′→ηπ +π -
The Dalitz plot of η⊃′→ηπ⊃+π⊃- decay is studied using (225.2±2.8)×106 J/ψ events collected with the BESIII detector at the BEPCII e⊃+e⊃- collider. With the largest sample of η⊃′ decays to date, the parameters of the Dalitz plot are determined in a generalized and a linear representation. Also, the branching fraction of J/ψ→γη⊃′ is determined to be (4.84±0.03±0.24)×10⊃-3, where the first error is statistical and the second systematic. © 2011 American Physical Society.published_or_final_versio
Higher-order multipole amplitude measurement in ψ ′→γχ c2
Using 106×106 ψ ′ events collected with the BESIII detector at the BEPCII storage ring, the higher-order multipole amplitudes in the radiative transition ψ ′→γχ c2→γπ +π -/γK +K - are measured. A fit to the χ c2 production and decay angular distributions yields M2=0.046±0. 010±0.013 and E3=0.015±0.008±0.018, where the first errors are statistical and the second systematic. Here M2 denotes the normalized magnetic quadrupole amplitude and E3 the normalized electric octupole amplitude. This measurement shows evidence for the existence of the M2 signal with 4.4σ statistical significance and is consistent with the charm quark having no anomalous magnetic moment. © 2011 American Physical Society.published_or_final_versio
- …
