2,971 research outputs found

    Dead space effect in space-charge region of collector of AlGaAs/InGaAs p-n-p heterojunction bipolar transistors

    Get PDF
    Hole-initiated avalanche multiplication is investigated using an AlGaAs/InGaAs p-n-p heterojunction bipolar transistor (HBT). Both experimental measurements and theoretical calculation are used to determine the avalanche multiplication factor. A large departure is observed at low electric field when comparison is made between the measured data and theoretical results obtained from the standard ionization model. The comparison shows that the conventional impact ionization model, based on local electric field, substantially overestimates the hole avalanche multiplication factor Mp - 1 in the AlGaAs/InGaAs p-n-p HBT, where a significant dead space effect occurs in the collector space-charge region. A simple correction model for the dead space is proposed, that allows the multiplication to be accurately predicted, even in a heavily doped structure. Based on this model, multiplication characteristics for different threshold energy of the hole are calculated. A threshold energy of 2.5 eV was determined to be suitable for describing the hole-initiated impact ionization process. © 2001 American Institute of Physics.published_or_final_versio

    High efficiency, low offset voltage InGaP/GaAs power heterostructure-emitter bipolar transistors with advanced thermal management

    Get PDF
    High efficiency, low offset voltage InGaP/GaAs power heterostructure-emitter bipolar transistors (HEBTs) have been demonstrated. The large signal performance of the HEBTs is characterized. Output power of 0.25 W with power added efficiency (PAE) of 63.5% at 1.9 GHz has been achieved from a 26-finger HEBT with total emitter area of 873.6 μm2. Output power of 1.0 W with PAE of 63% has been obtained from the composition of four above-mentioned power cells at the optimum conditions of impedance matching. The thermal performance of HEBT is presented and the results show better thermal management than conventional HBT. The experimental results demonstrate good power performance and capability of HEBTs.published_or_final_versio

    Low turn-on voltage InGaP/GaAsSb/GaAs double HBTs grown by MOCVD

    Get PDF
    A novel InGaP/GaAs0.92Sb0.08/GaAs double heterojunction bipolar transistor (DHBT) with low turn-on voltage has been fabricated. The turn-on voltage of the DHBT is typically 150 mV lower than that of the conventional InGaP/GaAs HBT, indicating that GaAsSb is a suitable base material for reducing the turn-on voltage of GaAs HBTs. A current gain of 50 has been obtained for the InGaP/GaAs0.92Sb0.08/GaAs DHBT. The results show that InGaP/GaAsSb/GaAs DHBTs have a great potential for reducing operating voltage and power dissipation.published_or_final_versio

    Thermal stability of current gain in InGaP/GaAsSb/GaAs double-heterojunction bipolar transistors

    Get PDF
    The thermal stability of current gain in InGaP/GaAsSb/GaAs double-heterojunction bipolar transistors (DHBTs) is investigated. The experimental results show that the current gain in the InGaP/GaAsSb/GaAs DHBTs is nearly independent of the substrate temperature at collector current densities > 10 A/cm2, indicating that the InGaP/GaAsSb/GaAs DHBTs have excellent thermal stability. This finding suggests that the InGaP/GaAsSb/GaAs DHBTs have larger emitter-base junction valence-band discontinuity than traditional GaAs-based HBTs. © 2004 American Institute of Physics.published_or_final_versio

    Current transport mechanism in InGaP/GaAsSb/GaAs double-heterojunction bipolar transistors

    Get PDF
    We have developed InGaP/GaAsSb/GaAs double-heterojunction bipolar transistors (DHBTs) with low turn-on voltage and high current gain by using a narrow energy bandgap GaAsSb layer as the base and an InGaP layer as the emitter. The current transport mechanism is examined by measuring both of the terminal currents in forward and reverse mode. The results show that the dominant current transport mechanism in the InGaP/GaAsSb/GaAs DHBTs is the transport of carriers across the base layer. This finding suggests that the bandgap offset produced by incorporating Sb composition into GaAs mainly appears on the valence band and the conduction-band offset in InGaP/GaAsSb heterojunction is very small. © 2004 American Institute of Physics.published_or_final_versio

    A small synthetic molecule functions as a chloride–bicarbonate dual-transporter and induces chloride secretion in cells

    Get PDF
    A C2 symmetric small molecule composed of L-phenylalanine and isophthalamide was found to function as a Cl−/HCO3− dual transporter and self-assemble into chloride channels. In Ussing-chamber based short-circuit current measurements, this molecule elicited chloride-dependent short-circuit current (Isc) increase in both Calu-3 cell and CFBE41o-cell (with F508del mutant CFTR) monolayers.postprin

    InGaP/GaAsSb/GaAs DHBTs with low turn-on voltage and high current gain

    Get PDF
    An InGaP/GaAsSb/GaAs double heterojunction bipolar transistor (DHBT) is presented. It features the use of a fully strained pseudomorphic GaAsSb (Sb composition: 10.4%) as the base layer and an InGaP layer as the emitter, which both eliminates the misfit dislocations and increases the valence band discontinuity at the InGaP/GaAsSb interface. A current gain of 200 has been obtained from the InGaP/GaAsSb/GaAs DHBT, which is the highest value obtained from GaAsSb base GaAs-based HBTs. The turn-on voltage of the device is typically 0.914 V for the 10.4% Sb composition, which is 0.176V tower than that of traditional InGaP/GaAs HBT. The results show that GaAsSb is a suitable base material for reducing the turn-on voltage of GaAs HBTs.published_or_final_versio

    Synthesis of new dendritic chiral binol ligands and their applications in enantioselective lewis acid catalyzed addition of diethylzinc to aldehydes

    Get PDF
    2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Structure-Induced Reversible Anionic Redox Activity in Na Layered Oxide Cathode

    Get PDF
    Anionic redox reaction (ARR) in lithium- and sodium-ion batteries is under hot discussion, mainly regarding how oxygen anion participates and to what extent oxygen can be reversibly oxidized and reduced. Here, a P3-type Na0.6[Li0.2Mn0.8]O2 with reversible capacity from pure ARR was studied. The interlayer O-O distance (peroxo-like O-O dimer, 2.506(3) Å), associated with oxidization of oxygen anions, was directly detected by using a neutron total scattering technique. Different from Li2RuO3 or Li2IrO3 with strong metal-oxygen (M-O) bonding, for P3-type Na0.6[Li0.2Mn0.8]O2 with relatively weak Mn-O covalent bonding, crystal structure factors might play an even more important role in stabilizing the oxidized species, as both Li and Mn ions are immobile in the structure and thus may inhibit the irreversible transformation of the oxidized species to O2 gas. Utilization of anionic redox reaction (ARR) on oxygen has been considered as an effective way to promote the charge-discharge capacity of the layered oxide cathodes for lithium- or sodium-ion batteries. The detailed mechanism of ARR, in particular how crystal structure affects and coordinates with the ARR, is not yet well understood. In the present work, a combination of X-ray and neutron total scattering measurements has been performed to study the structure of the prototype P3-type layered Na0.6[Li0.2Mn0.8]O2 with pure ARR. Unique structural characteristics, rather than prevailing knowledge of covalency of metal-oxygen, enable the stabilization of the crystal structure of Na0.6[Li0.2Mn0.8]O2 along with the ARR. This work suggests that reversible ARR can be manipulated by proper structure designs, thus to achieve high lithium or sodium storage in layered oxide cathodes. For P3-type Na0.6[Li0.2Mn0.8]O2 with relatively weak Mn-O covalent bonding, crystal structure factors play an important role in stabilizing the oxidized species, inhibiting the irreversible transformation of the oxidized species to O2 gas. The finding is important for better design of layered oxide positive materials with higher reversible capacity via the introduction of a reversible anionic redox reaction
    corecore