905 research outputs found
Increased expression of GABA transporters, GAT-1 and GAT-3, in the deafferented superior colliculus of the rat.
GABA transporters (GATs) play a critical role in the translemmal transport of GABA in neurons and glial cells. Two major brain GATs, GAT-1 and GAT-3, are found in astrocytes in the adult brain. Astroglia demonstrate morphological and molecular changes in response to brain injury and deafferentation. The present study was designed to determine whether the expression of GATs changes after nerve deafferentation using the rat superior colliculus (SC) as a model. The immunoreactivity for GAT-1 and GAT-3, as well as GABA and glutamic acid decarboxylase (GAD)-65 and GAD-67, was studied in the SC of control rats and rats with unilateral optic nerve transections. Immunolabeling for both GAT-1 and GAT-3 was increased in the neuropil of the denervated SC as compared to that for the SC of control rats or for the unaffected SC of experimental rats. In contrast, immunoreactivity for GABA, GAD-65 and GAD-67 was not altered. The change in the immunolabeling of GAT-1 and GAT-3 was detectable at 1 day postlesion and became more evident between 3-30 days postlesion. At the electron microscopic level, immunoreactivity for both GAT-1 and GAT-3 in the unaffected SC was localized to astrocytic processes, whereas GAT-1 immunolabeling was also present in synaptic terminals. In the deafferented SC, immunolabeling for both GATs was elevated in the somata and processes of hypertrophied astrocytes as compared to that in the unaffected SC, whereas GAT-1 labeling in neuronal profiles was largely unchanged. A substantial increase of GAT-1 and GAT-3 in astrocytes following optic nerve transection suggests that these cells play a role in modulating GABA's action in the deafferented SC
Recommended from our members
Calcitonin gene-related peptide immunoreactivity selectively labels accessory optic nuclei and pathways of the rat visual system.
The present study shows the distribution of calcitonin gene-related peptide (CGRP)-immunolabeled neuronal somata and fibers in the accessory optic system of adult rats. CGRP-immunoreactive cell bodies were small to medium-sized and mostly fusiform or oval-shaped. Both immunolabeled somata and fibers were found in the dorsal and lateral terminal nuclei as well as in the interstitial nucleus of the superior fasciculus (posterior fibers); whereas only immunoreactive fibers were found in the ventral division of the medial terminal nucleus, particularly its rostral portion. These results indicate that CGRP-containing neurons are present in all nuclear components of the accessory optic system and suggest that this neuropeptide may play a neuromodulative role in eye movements
Recommended from our members
Alteration of GABA transporter expression in the rat cerebral cortex following needle puncture and colchicine injection.
In the adult cerebral cortex, GABA transporters (GATs) are expressed by both neurons and astrocytes. GAT-1 immunoreactivity is found in axon terminals of GABAergic neurons and astrocytes, while GAT-3 immunolabeling occurs only in the latter. The present study was designed to determine whether the expression of GAT-1 and GAT-3 in the adult rat cerebrum changes after needle lesion and colchicine infusion. Following a needle puncture or a saline injection, immunolabeling for GAT-1 and GAT-3 was slightly increased in an area around the needle track. Not only was the neuropil labeling for both GATs increased, but also a few neuronal somata were found to be immunoreactive for GAT-1. Colchicine injections induced a striking increase in immunolabeling for both GATs in the neuropil in an area adjacent to the needle path and surrounding it. A homologous region of the contralateral hemisphere also showed a moderate increase of immunoreactivity in the neuropil for both GATs. Furthermore, this contralateral site showed many neuronal somata immunolabeled for GAT-1. These changes were mainly detected during the first 5 days following intracortical lesions. These results indicate that (1) the upregulation of GAT-1 and GAT-3 in cortical interneurons and astrocytes is caused by both mechanical and chemical factors associated with the injections; (2) increased GAT-1 and GAT-3 expression contralateral to the site of colchicine injection is mediated by transcellular signaling across the corpus callosum; and (3) the lesion-induced GAT expression may play a protective role by helping to balance excitatory and inhibitory neuronal activities
Recommended from our members
Synaptic and neurochemical features of calcitonin gene-related peptide containing neurons in the rat accessory optic nuclei.
Within the rodent visual system, calcitonin gene-related peptide (CGRP) is selectively expressed in neurons in the accessory optic nuclei (AON), including the dorsal terminal nucleus (DTN), lateral terminal nucleus (LTN) and medial terminal nucleus (MTN). To determine whether CGRP-immunoreactive neurons are involved in visual circuitry, electron microscopic preparations were analyzed from normal rats and rats with optic nerve transections. A co-localization analysis was also made because CGRP-labeled neurons had features of GABAergic neurons. Thus, sections were prepared for light microscopy to determine whether CGRP-containing neurons also had glutamate decarboxylase (GAD) and other markers for GABAergic neurons, such as calcium binding proteins: calbindin (CB), calretinin (CR) and parvalbumin (PV). Electron microscopy of the DTN and LTN showed CGRP-labeled somata and dendrites that were postsynaptic to axon terminals forming asymmetric synapses. Many of these axon terminals degenerated following optic nerve transection indicating that retinal ganglion cells form synapses with CGRP-labeled neurons in the AON. In the DTN, LTN and MTN, CGRP-labeled axon terminals formed symmetric synapses with unlabeled somata as well as dendritic shafts and spines. Consistent with this type of synapse being GABAergic were the co-localization data showing that about 90% of the CGRP-labeled neurons co-localized GAD in the AON. Many CGRP-labeled neurons showed immunostaining for CR (40%) whereas only a few had labeling for CB (5%). No CGRP-labeled neurons had PV. These data show that CGRP-containing neurons receive direct retinal input and represent a subpopulation of GABAergic neurons which differentially co-express calcium-binding proteins
Recommended from our members
Atypical features of rat dentate granule cells: recurrent basal dendrites and apical axons.
The stereotyped morphology of dentate granule cells in rodents consists of apical dendrites arborizing in the molecular layer and an axon arising from the opposite pole of the soma. Recently, we showed that epilepsy induces the formation of basal dendrites on granule cells and that these dendrites extend into the hilus of the dentate gyrus. The present Golgi study of granule cells from adult rats shows two atypical features for granule cells in control rats. One is the occurrence of recurrent basal dendrites (RBDs) that are defined as basal dendrites arising at or near the hilar pole of the soma and then curving back to the molecular layer. The frequency of granule cells with RBDs was 3.8% in control rats. The second is apical axons of granule cells that were observed to originate from either the apical pole of the soma or an apical dendrite. The incidence of these "apical" axons was about 1%. These morphological findings in the present study suggest that rat granule cells are more heterogeneous than previously indicated. Furthermore, their frequency was not increased in epileptic rats
Investigation on the Dispersal Characteristics of Liquid Breakup in Vacuum
This work presents an experimental study on the dispersal characteristics of a liquid jet ejecting into vacuum. The liquid breaking experiments of several kinds of liquid under different pressure and temperature conditions are carried out in a flash chamber. The stability of the jet and the sizes of the droplets or the icing particles formed during liquid flashing dispersing are analyzed. The influences of the superheat degree, spray velocity, and the mass of the volatile liquid mixing in the nonvolatile liquid on these characteristics are discussed. Moreover, the applicability of the two definitions of superheat degree is discussed. The results show that the superheat degree is an important parameter influencing the pattern of the breaking liquid, and the jet velocity has a large influence on the distribution of particle sizes. In addition, mixing some volatile liquid with nonvolatile liquid can enhance the dispersion of the latter
Dentate granule cells form novel basal dendrites in a rat model of temporal lobe epilepsy.
Mossy fibre sprouting and re-organization in the inner molecular layer of the dentate gyrus is a characteristic of many models of temporal lobe epilepsy including that induced by perforant-path stimulation. However, neuroplastic changes on the dendrites of granule cells have been less-well studied. Basal dendrites are a transient morphological feature of rodent granule cells during development. The goal of the present study was to examine whether granule cell basal dendrites are generated in rats with epilepsy induced by perforant-path stimulation. Adult Wistar rats were stimulated for 24 h at 2 Hz and with intermittent (1/min) trains (10 s duration) of single stimuli at 20 Hz (20 V, 0.1 ms) delivered 1/min via an electrode placed in the angular bundle. The brains of these experimental rats and age- and litter-matched control animals were processed for the rapid Golgi method. All rats with perforant-path stimulation displayed basal dendrites on many Golgi-impregnated granule cells. These basal dendrites mainly originated from their somata at the hilar side and then extended into the hilus. Quantitative analysis of more than 800 granule cells in the experimental and matched control brains showed that 6-15% (mean=8.7%) of the impregnated granule cells have spiny basal dendrites on the stimulated side, as well as the contralateral side (mean=3.1%, range=2.9-3.9%) of experimental rats, whereas no basal dendrites were observed in the dentate gyrus from control animals. The formation of basal dendrites appears to be an adaptive morphological change for granule cells in addition to the previously described mossy fibre sprouting, as well as dendritic and somatic spine formation observed in the dentate gyrus of animal and human epileptic brains. The presence of these dendrites in the subgranular region of the hilus suggests that they may be postsynaptic targets of the mossy fibre collaterals
Seizure-induced basal dendrites on granule cells
Seizure-induced hilar basal dendrites on dentate granule cells are observed in several rodent models of temporal lobe epilepsy. Ultrastructural evidence showed that basal dendrites receive predominantly excitatory synapses, including many from mossy fibers. Such highly interconnected granule cells with basal dendrites are suggested to enhance hyperexcitability within the dentate network. For an expanded treatment of this topic see Jasper's Basic Mechanisms of the Epilepsies, Fourth Edition (Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, eds) published by Oxford University Press (available on the National Library of Medicine Bookshelf [NCBI] at). © 2010 International League Against Epilepsy
Observation of CR Anisotropy with ARGO-YBJ
The measurement of the anisotropies of cosmic ray arrival direction provides
important informations on the propagation mechanisms and on the identification
of their sources. In this paper we report the observation of anisotropy regions
at different angular scales. In particular, the observation of a possible
anisotropy on scales between 10 and 30
suggests the presence of unknown features of the magnetic fields the charged
cosmic rays propagate through, as well as potential contributions of nearby
sources to the total flux of cosmic rays. Evidence of new weaker few-degree
excesses throughout the sky region R.A. is
reported for the first time.Comment: Talk given at 12th TAUP Conference 2011, 5-9 September 2011, Munich,
German
Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein
Lysenin from the coelomic fluid of the earthworm Eisenia fetida belongs to the aerolysin family of small β-pore-forming toxins (β-PFTs), some members of which are pathogenic to humans and animals. Despite efforts, a high-resolution structure of a channel for this family of proteins has been elusive and therefore the mechanism of activation and membrane insertion remains unclear. Here we determine the pore structure of lysenin by single particle cryo-EM, to 3.1 Å resolution. The nonameric assembly reveals a long β-barrel channel spanning the length of the complex that, unexpectedly, includes the two pre-insertion strands flanking the hypothetical membrane-insertion loop. Examination of other members of the aerolysin family reveals high structural preservation in this region, indicating that the membrane-insertion pathway in this family is conserved. For some toxins, proteolytic activation and pro-peptide removal will facilitate unfolding of the pre-insertion strands, allowing them to form the β-barrel of the channel
- …
