25,763 research outputs found

    On Two Kinds of Differential Operators on General Smooth Surfaces

    Full text link
    Two kinds of differential operators that can be generally defined on an arbitrary smooth surface in a finite dimensional Euclid space are studied, one is termed as surface gradient and the other one as Levi-Civita gradient. The surface gradient operator is originated from the differentiability of a tensor field defined on the surface. Some integral and differential identities have been theoretically studied that play the important role in the studies on continuous mediums whose geometrical configurations can be taken as surfaces and on interactions between fluids and deformable boundaries. The definition of Levi-Civita gradient is based on Levi-Civita connections generally defined on Riemann manifolds. It can be used to set up some differential identities in the intrinsic/coordiantes-independent form that play the essential role in the theory of vorticity dynamics for two dimensional flows on general fixed smooth surfaces

    On the Ground State Wave Function of Matrix Theory

    Full text link
    We propose an explicit construction of the leading terms in the asymptotic expansion of the ground state wave function of BFSS SU(N) matrix quantum mechanics. Our proposal is consistent with the expected factorization property in various limits of the Coulomb branch, and involves a different scaling behavior from previous suggestions. We comment on some possible physical implications.Comment: 21 page

    On Degrees of Freedom of Projection Estimators with Applications to Multivariate Nonparametric Regression

    Full text link
    In this paper, we consider the nonparametric regression problem with multivariate predictors. We provide a characterization of the degrees of freedom and divergence for estimators of the unknown regression function, which are obtained as outputs of linearly constrained quadratic optimization procedures, namely, minimizers of the least squares criterion with linear constraints and/or quadratic penalties. As special cases of our results, we derive explicit expressions for the degrees of freedom in many nonparametric regression problems, e.g., bounded isotonic regression, multivariate (penalized) convex regression, and additive total variation regularization. Our theory also yields, as special cases, known results on the degrees of freedom of many well-studied estimators in the statistics literature, such as ridge regression, Lasso and generalized Lasso. Our results can be readily used to choose the tuning parameter(s) involved in the estimation procedure by minimizing the Stein's unbiased risk estimate. As a by-product of our analysis we derive an interesting connection between bounded isotonic regression and isotonic regression on a general partially ordered set, which is of independent interest.Comment: 72 pages, 7 figures, Journal of the American Statistical Association (Theory and Methods), 201
    corecore