3,144 research outputs found

    Kosterlitz-Thouless phase transition and reentrance in an anisotropic 3-state Potts model on the generalized Kagome lattice

    Full text link
    The unusual reentrant phenomenon is observed in the anisotropic 3-state Potts model on a gen- eralized Kagome lattice. By employing the linearized tensor renormalization group method, we find that the reentrance can appear in the region not only under a partial ordered phase as commonly known but also a phase without a local order parameter, which is uncovered to fall into the uni- versality of the Kosterlitz-Thouless (KT) type. The region of the reentrance depends strongly on the ratios of the next nearest couplings {\alpha} = J2 /|J1 | and {\beta} = J3 /|J1 |. The phase diagrams in the plane of temperature versus {\beta} for different {\alpha} are obtained. Through massive calculations, it is also revealed that the quasi-entanglement entropy can be used to accurately detect the KT transition temperature

    Properties of weighted complex networks

    Full text link
    We study two kinds of weighted networks, weighted small-world (WSW) and weighted scale-free (WSF). The weight wijw_{ij} of a link between nodes ii and jj in the network is defined as the product of endpoint node degrees; that is wij=(kikj)θw_{ij}=(k_{i}k_{j})^{\theta}. In contrast to adding weights to links during networks being constructed, we only consider weights depending on the `` popularity\rq\rq of the nodes represented by their connectivity. It was found that the both weighted networks have broad distributions on characterization the link weight, vertex strength, and average shortest path length. Furthermore, as a survey of the model, the epidemic spreading process in both weighted networks was studied based on the standard \emph{susceptible-infected} (SI) model. The spreading velocity reaches a peak very quickly after the infection outbreaks and an exponential decay was found in the long time propagation.Comment: 14 pages, 5 figure

    Low-threshold room-temperature AlGaAs/GaAs nanowire/single-quantum-well heterostructure laser

    Get PDF
    Near-infrared nanowire lasers are promising as ultrasmall, low-consumption light emitters in on-chip optical communications and computing systems. Here, we report on a room-temperature near-infrared nanolaser based on an AlGaAs/GaAs nanowire/single-quantum-well heterostructure grown by Au-catalyzed metal organic chemical vapor deposition. When subjects to pulsed optical excitation, the nanowire exhibits lasing, with a low threshold of 600 W/cm2, a narrow linewidth of 0.39 nm, and a high Q factor of 2000 at low temperature. Lasing is observed up to 300 K, with an ultrasmall temperature dependent wavelength shift of 0.045 nm/K. This work paves the way towards ultrasmall, low-consumption, and high-temperature-stability near-infrared nanolasers

    Rhodamine-triazine based probes for Cu²⁺ in aqueous media and living cells

    Get PDF
    The performance of a number of rhodamine-triazine derivatives(probe R1~R4) which utilize rhodamine as the fluorophore with cyanuric chloride as the molecular platform have been evaluated. Spectroscopic analysis revealed that differing structural substitution patterns of the probe resulted in different sensitivity and selectivity for specific metal ions. The probes R1 and R2 were fluorescent/colorimetric probes for Cu²⁺, whilst R3 and R4 were probes for Al³⁺, Cr³⁺ and Fe³⁺. The probe R2 exhibited superior recognition for Cu²⁺ in neutral aqueous medium, and the optical switching behavior of R2 for Cu²⁺ and S²⁻ could be used to construct a molecular logic gate. In addition, fluorescence imaging of probe R2 for Cu²⁺ in living cells was demonstrated

    Walks on weighted networks

    Full text link
    We investigate the dynamics of random walks on weighted networks. Assuming that the edge's weight and the node's strength are used as local information by a random walker, we study two kinds of walks, weight-dependent walk and strength-dependent walk. Exact expressions for stationary distribution and average return time are derived and confirmed by computer simulations. We calculate the distribution of average return time and the mean-square displacement for two walks on the BBV networks, and find that a weight-dependent walker can arrive at a new territory more easily than a strength-dependent one.Comment: 4 pages, 5 figures. minor modifications. Comments and suggestions are favored by the author

    Vasopressin and epinephrine versus epinephrine in management of patients with cardiac arrest: a meta-analysis

    Get PDF
    Objective. A combination of vasopressin and epinephrine may be more effective than epinephrine alone in cardiopulmonary resuscitation (CPR), but evidence is lacking to make clinical recommendations. This meta-analysis compares the efficacy of vasopressin and epinephrine used together versus epinephrine alone in cardiac arrest (CA). Methods. We searched MEDLINE and EMBASE for randomized trials comparing the efficacy of vasopressin and epinephrine versus epinephrine alone in adults with cardiac arrest. The primary outcome was the return of spontaneous circulation (ROSC) and the survival rate on admission and discharge .We also analyzed ROSC in subgroups of patients presenting with different arrest rhythms, such as asystole, pulseless electrical activity (PEA), ventricular fibrillation (VF). Results. We analyzed 6 randomized trials out of 485 articles. We did not find evidence supporting the superiority of vasopressin and epinephrine used in combination, except for the survival rate at 24h 2.99 95% CI(1.43,6.28). No evidence supports the conclusion that vasopressin combined with epinephrine is better than epinephrine alone for ROSC, even amongst subgroups of patients. Conclusion. This systematic review of the efficacy of vasopressin and epinephrine use found that its combined use is better for 24h survival rate but only in one study which included 122 patients. Further investigation will be needed to support the use of this combination for cardiac arrest management

    A new prognostic scale for the early prediction of ischemic stroke recovery mainly based on traditional Chinese medicine symptoms and NIHSS score: a retrospective cohort study

    Get PDF
    TCM symptoms & signs with appearance rate no less than 5 %. In practical analysis we selected 57 TCM symptoms with the appearance rate ≥5 % from 157 TCM symptoms& signs except tongue and pulse. (CSV 1 kb

    Co-targeting of DNA, RNA, and protein molecules provides optimal outcomes for treating osteosarcoma and pulmonary metastasis in spontaneous and experimental metastasis mouse models.

    Get PDF
    Metastasis is a major cause of mortality for cancer patients and remains as the greatest challenge in cancer therapy. Driven by multiple factors, metastasis may not be controlled by the inhibition of single target. This study was aimed at assessing the hypothesis that drugs could be rationally combined to co-target critical DNA, RNA and protein molecules to achieve "saturation attack" against metastasis. Independent actions of the model drugs DNA-intercalating doxorubicin, RNA-interfering miR-34a and protein-inhibiting sorafenib on DNA replication, RNA translation and protein kinase signaling in highly metastatic, human osteosarcoma 143B cells were demonstrated by the increase of γH2A.X foci formation, reduction of c-MET expression and inhibition of Erk1/2 phosphorylation, respectively, and optimal effects were found for triple-drug combination. Consequently, triple-drug treatment showed a strong synergism in suppressing 143B cell proliferation and the greatest effects in reducing cell invasion. Compared to single- and dual-drug treatment, triple-drug therapy suppressed pulmonary metastases and orthotopic osteosarcoma progression to significantly greater degrees in orthotopic osteosarcoma xenograft/spontaneous metastases mouse models, while none showed significant toxicity. In addition, triple-drug therapy improved the overall survival to the greatest extent in experimental metastases mouse models. These findings demonstrate co-targeting of DNA, RNA and protein molecules as a novel therapeutic strategy for the treatment of metastasis
    corecore