5,047 research outputs found
Long-distant contribution and radiative decays to light vector meson
The discrepancy between the PQCD calculation and the CLEO data for
() stimulates our interest in
exploring extra mechanism of decay. In this work, we apply an
important non-perturbative QCD effect, i.e., hadronic loop mechanism, to study
radiative decay. Our numerical result shows that the
theoretical results including the hadronic loop contribution and the PQCD
calculation of are consistent with the corresponding
CLEO data of . We expect further experimental
measurement of at BES-III, which will be helpful to
test the hadronic loop effect on decay.Comment: 7 pages, 2 figures. Accepted for publication in Eur. Phys. J.
Scaling of Anisotropic Flows and Nuclear Equation of State in Intermediate Energy Heavy Ion Collisions
Elliptic flow () and hexadecupole flow () of light clusters have
been studied in details for 25 MeV/nucleon Kr + Sn at large
impact parameters by Quantum Molecular Dynamics model with different potential
parameters. Four parameter sets which include soft or hard equation of state
(EOS) with/without symmetry energy term are used. Both number-of-nucleon ()
scaling of the elliptic flow versus transverse momentum () and the scaling
of versus have been demonstrated for the light clusters
in all above calculation conditions. It was also found that the ratio of
keeps a constant of 1/2 which is independent of for all the
light fragments. By comparisons among different combinations of EOS and
symmetry potential term, the results show that the above scaling behaviors are
solid which do not depend the details of potential, while the strength of flows
is sensitive to EOS and symmetry potential term.Comment: 5 pages, 5 figure
Observation of electron-antineutrino disappearance at Daya Bay
The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for
the neutrino mixing angle with a significance of 5.2 standard
deviations. Antineutrinos from six 2.9 GW reactors were detected in
six antineutrino detectors deployed in two near (flux-weighted baseline 470 m
and 576 m) and one far (1648 m) underground experimental halls. With a 43,000
ton-GW_{\rm th}-day livetime exposure in 55 days, 10416 (80376) electron
antineutrino candidates were detected at the far hall (near halls). The ratio
of the observed to expected number of antineutrinos at the far hall is
. A rate-only analysis
finds in a
three-neutrino framework.Comment: 5 figures. Version to appear in Phys. Rev. Let
A detailed QCD analysis of twist-3 effects in DVCS observables
In this paper I present a detailed QCD analysis of twist-3 effects in the
Wandzura-Wilczek (WW) approximation in deeply virtual Compton scattering (DVCS)
observables for various kinematical settings, representing the HERA, HERMES,
CLAS and the planned EIC (electron-ion-collider) experiments. I find that the
twist-3 effects in the WW approximation are almost always negligible at
collider energies but can be large for low Q^2 and smaller x_bj in observables
for the lower energy, fixed target experiments directly sensitive to the real
part of DVCS amplitudes like the charge asymmetry (CA). Conclusions are then
drawn about the reliability of extracting twist-2 generalized parton
distributions (GPDs) from experimental data and a first, phenomenological,
parameterization of the LO and NLO twist-2 GPD , describing all the
currently available DVCS data within the experimental errors is given.Comment: 18 pages, 21 figures, uses Revtex4, final version to be published in
PRD, minor revisions due to referee suggestion
A study on the extraction and purification technology of tea sapogenin
In order to extract and purify tea sapogenin, first the extraction liquid is obtained using mechanically pressed tea-seeds as raw material, which will be decreased by organic solvent. When the conditions like the methanol volume fraction is 75v/v, solid-liquid is 1:4 and the ultrasonic frequency is 25.8 Hz, extract them for 30 min. After this, collect the extraction liquid and slowly add in Hz-841 macroporous resin column, then elute it with 0.3% NaOH. The third step is to elute with ethanol of different concentrations after the coloring pigment is got rid of, and then detect it with thin layer chromatography (TLC). It is discovered that there is only tea sapogenin in the 35 – 95v/v ethanol elution liquid. The last step is to collect the 95% ethanol elution liquid and vacuum condense it; and then tea-Tea sapogenin with a purity of 96% can be obtained
Giant Ferroelectric Polarization of CaMn7O12 Induced by a Combined Effect of Dzyaloshinskii-Moriya Interaction and Exchange Striction
By extending our general spin-current model to non-centrosymmetric spin
dimers and performing density functional calculations, we investigate the
causes for the helical magnetic order and the origin of the giant ferroelectric
polarization of CaMn7O12. The giant ferroelectric polarization is proposed to
be caused by the symmetric exchange striction due to the canting of the Mn4+
spin arising from its strong Dzyaloshinskii-Moriya (DM) interaction. Our study
suggests that CaMn7O12 may exhibit a novel magnetoelectric coupling mechanism
in which the magnitude of the polarization is governed by the exchange
striction, but the direction of the polarization by the chirality of the
helical magnetic order.Comment: Accepted for publication in Phys. Rev. Let
The tomato Prf complex is a molecular trap for bacterial effectors based on Pto transphosphorylation
The bacteria Pseudomonas syringae is a pathogen of many crop species and one of the model pathogens for studying plant and bacterial arms race coevolution. In the current model, plants perceive bacteria pathogens via plasma membrane receptors, and recognition leads to the activation of general defenses. In turn, bacteria inject proteins called effectors into the plant cell to prevent the activation of immune responses. AvrPto and AvrPtoB are two such proteins that inhibit multiple plant kinases. The tomato plant has reacted to these effectors by the evolution of a cytoplasmic resistance complex. This complex is compromised of two proteins, Prf and Pto kinase, and is capable of recognizing the effector proteins. How the Pto kinase is able to avoid inhibition by the effector proteins is currently unknown. Our data shows how the tomato plant utilizes dimerization of resistance proteins to gain advantage over the faster evolving bacterial pathogen. Here we illustrate that oligomerisation of Prf brings into proximity two Pto kinases allowing them to avoid inhibition by the effectors by transphosphorylation and to activate immune responses
Effect of the tetrahedral distortion on the electronic properties of iron-pnictides
We study the dependence of the electronic structure of iron pnictides on the
angle formed by the arsenic-iron bonds. Within a Slater-Koster tight binding
model which captures the correct symmetry properties of the bands, we show that
the density of states and the band structure are sensitive to the distortion of
the tetrahedral environment of the iron atoms. This sensitivity is extremely
strong in a two-orbital (d_xz, d_yz) model due to the formation of a flat band
around the Fermi level. Inclusion of the d_xy orbital destroys the flat band
while keeping a considerable angle dependence in the band structure.Comment: 5 pages, including 5 figures. Fig. 5 replaced. Minor changes in the
tex
A novel class of microRNA-recognition elements that function only within open reading frames.
MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells
- …
