12,525 research outputs found
Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges
With the rapid development of marine activities, there has been an increasing
number of maritime mobile terminals, as well as a growing demand for high-speed
and ultra-reliable maritime communications to keep them connected.
Traditionally, the maritime Internet of Things (IoT) is enabled by maritime
satellites. However, satellites are seriously restricted by their high latency
and relatively low data rate. As an alternative, shore & island-based base
stations (BSs) can be built to extend the coverage of terrestrial networks
using fourth-generation (4G), fifth-generation (5G), and beyond 5G services.
Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs.
Despite of all these approaches, there are still open issues for an efficient
maritime communication network (MCN). For example, due to the complicated
electromagnetic propagation environment, the limited geometrically available BS
sites, and rigorous service demands from mission-critical applications,
conventional communication and networking theories and methods should be
tailored for maritime scenarios. Towards this end, we provide a survey on the
demand for maritime communications, the state-of-the-art MCNs, and key
technologies for enhancing transmission efficiency, extending network coverage,
and provisioning maritime-specific services. Future challenges in developing an
environment-aware, service-driven, and integrated satellite-air-ground MCN to
be smart enough to utilize external auxiliary information, e.g., sea state and
atmosphere conditions, are also discussed
Illusion Media: Generating Virtual Objects Using Realizable Metamaterials
We propose a class of optical transformation media, illusion media, which
render the enclosed object invisible and generate one or more virtual objects
as desired. We apply the proposed media to design a microwave device, which
transforms an actual object into two virtual objects. Such an illusion device
exhibits unusual electromagnetic behavior as verified by full-wave simulations.
Different from the published illusion devices which are composed of left-handed
materials with simultaneously negative permittivity and permeability, the
proposed illusion media have finite and positive permittivity and permeability.
Hence the designed device could be realizable using artificial metamaterials.Comment: 9 pages, 4 figures, published in Appl. Phys. Lett
Maritime coverage enhancement using UAVs coordinated with hybrid satellite-terrestrial networks
Due to the agile maneuverability, unmanned aerial vehicles (UAVs) have shown great promise for on-demand communications. In practice, UAV-aided aerial base stations are not separate. Instead, they rely on existing satellites/terrestrial systems for spectrum sharing and efficient backhaul. In this case, how to coordinate satellites, UAVs and terrestrial systems is still an open issue. In this paper, we deploy UAVs for coverage enhancement of a hybrid satellite-terrestrial maritime communication network. Using a typical composite channel model including both large-scale and small-scale fading, the UAV trajectory and in-flight transmit power are jointly optimized, subject to constraints on UAV kinematics, tolerable interference, backhaul, and the total energy of the UAV for communications. Different from existing studies, only the location-dependent large-scale channel state information (CSI) is assumed available, because it is difficult to obtain the small-scale CSI before takeoff in practice and the ship positions can be obtained via the dedicated maritime Automatic Identification System. The optimization problem is non-convex. We solve it by using problem decomposition, successive convex optimization and bisection searching tools. Simulation results demonstrate that the UAV fits well with existing satellite and terrestrial systems, using the proposed optimization framework
Optimal Beamforming for Hybrid Satellite Terrestrial Networks with Nonlinear PA and Imperfect CSIT
In hybrid satellite-terrestrial networks (HSTNs), spectrum sharing is crucial
to alleviate the "spectrum scarcity" problem. Therein, the transmit beams
should be carefully designed to mitigate the inter-satellite-terrestrial
interference. Different from previous studies, this work considers the impact
of both nonlinear power amplifier (PA) and large-scale channel state
information at the transmitter (CSIT) on beamforming. These phenomena are
usually inevitable in a practical HSTN. Based on the Saleh model of PA
nonlinearity and the large-scale multi-beam satellite channel parameters, we
formulate a beamforming optimization problem to maximize the achievable rate of
the satellite system while ensuring that the inter-satellite-terrestrial
interference is below a given threshold. The optimal amplitude and phase of
desired beams are derived in a decoupled manner. Simulation results demonstrate
the superiority of the proposed beamforming scheme.Comment: 5 pages, 5 figures, journa
Unifying ultrafast demagnetization and intrinsic Gilbert damping in Co/Ni bilayers with electronic relaxation near the Fermi surface
The ability to controllably manipulate the laser-induced ultrafast magnetic
dynamics is a prerequisite for future high speed spintronic devices. The
optimization of devices requires the controllability of the ultrafast
demagnetization time, , and intrinsic Gilbert damping, . In previous attempts
to establish the relationship between and , the rare-earth doping of a
permalloy film with two different demagnetization mechanism is not a suitable
candidate. Here, we choose Co/Ni bilayers to investigate the relations between
and by means of time-resolved magneto-optical Kerr effect (TRMOKE) via
adjusting the thickness of the Ni layers, and obtain an approximately
proportional relation between these two parameters. The remarkable agreement
between TRMOKE experiment and the prediction of breathing Fermi-surface model
confirms that a large Elliott-Yafet spin-mixing parameter is relevant to the
strong spin-orbital coupling at the Co/Ni interface. More importantly, a
proportional relation between and in such metallic films or heterostructures
with electronic relaxation near Fermi surface suggests the local spin-flip
scattering domains the mechanism of ultrafast demagnetization, otherwise the
spin-current mechanism domains. It is an effective method to distinguish the
dominant contributions to ultrafast magnetic quenching in metallic
heterostructures by investigating both the ultrafast demagnetization time and
Gilbert damping simultaneously. Our work can open a novel avenue to manipulate
the magnitude and efficiency of Terahertz emission in metallic heterostructures
such as the perpendicular magnetic anisotropic Ta/Pt/Co/Ni/Pt/Ta multilayers,
and then it has an immediate implication of the design of high frequency
spintronic devices
A class of line-transformed cloaks with easily-realizable constitutive parameters
We propose a class of line-transformed cylindrical cloaks which have
easily-realizable constitutive parameters. The scattering properties of such
cloaks have been investigated numerically for both transverse-electric (TE) and
transverse-magnetic (TM) incidences of plane waves. A line-transformed
invisibility cloak with a perfectly electric conducting (PEC) inner boundary is
actually a reshaping of a PEC line to which the cloaked object is crushed. The
numerical results of near-field distributions and far-field scattering
properties have verified the above conclusions. We also investigate the
relationship between the constitutive parameters of a line-transformed cloak
and the length of the corresponding line. The changing range of constitutive
parameters is large when the line is short, while the changing range becomes
small when the line is long. The above conclusion provides an efficient way to
realize the invisibility cloaks using artificial metamaterials.Comment: 15 pages, 6 figure
- …
