116 research outputs found

    Formation Under Communication Constraints: Control Performance Meets Channel Capacity

    Full text link
    In wireless communication-based formation control systems, the control performance is significantly impacted by the channel capacity of each communication link between agents. This relationship, however, remains under-investigated in the existing studies. To address this gap, the formation control problem of classical second-order multi-agent systems with bounded process noises was considered taking into account the channel capacity. More specifically, the model of communication links between agents is first established, based on a new concept -- guaranteed communication region, which characterizes all possible locations for successful message decoding in the present of control-system uncertainty. Furthermore, we rigorously prove that, the guaranteed communication region does not unboundedly increase with the transmission time, which indicates an important trade-off between the guaranteed communication region and the data rate. The fundamental limits of data rate for any desired accuracy are also obtained. Finally, the integrated design to achieve the desired formation accuracy is proposed, where an estimation-based controller and transmit power control strategy are developed

    X-ray Polarimetry of the accreting pulsar 1A~0535+262 in the supercritical state with PolarLight

    Full text link
    The X-ray pulsar 1A 0535+262 exhibited a giant outburst in 2020, offering us a unique opportunity for X-ray polarimetry of an accreting pulsar in the supercritical state. Measurement with PolarLight yielded a non-detection in 3-8 keV; the 99% upper limit of the polarization fraction (PF) is found to be 0.34 averaged over spin phases, or 0.51 based on the rotating vector model. No useful constraint can be placed with phase resolved polarimetry. These upper limits are lower than a previous theoretical prediction of 0.6-0.8, but consistent with those found in other accreting pulsars, like Her X-1, Cen X-3, 4U 1626-67, and GRO J1008-57, which were in the subcritical state, or at least not confidently in the supercritical state, during the polarization measurements. Our results suggest that the relatively low PF seen in accreting pulsars cannot be attributed to the source not being in the supercritical state, but could be a general feature.Comment: accepted for publication in Ap

    Re-detection and a Possible Time Variation of Soft X-ray Polarisation from the Crab

    Get PDF
    The Crab nebula is so far the only celestial object with a statistically significant detection in soft x-ray polarimetry, a window that has not been explored in astronomy since the 1970s. However, soft x-ray polarimetry is expected to be a sensitive probe of magnetic fields in high energy astrophysical objects including rotation-powered pulsars and pulsar wind nebulae. Here we report the re-detection of soft x-ray polarisation after 40 years from the Crab nebula and pulsar with PolarLight, a miniature polarimeter utilising a novel technique onboard a CubeSat. The polarisation fraction of the Crab in the on-pulse phases was observed to decrease after a glitch of the Crab pulsar on July 23, 2019, while that of the pure nebular emission remained constant within uncertainty. The phenomenon may have lasted about 100 days. If the association between the glitch and polarisation change can be confirmed with future observations, it will place strong constraints on the physical mechanism of the high energy emission and glitch of pulsars.Comment: Authors' version of an article published in Nature Astronomy on 11 May 2020. Link to the paper: https://www.nature.com/articles/s41550-020-1088-
    corecore