77,095 research outputs found

    Measuring the ratio of HWWHWW and HZZHZZ couplings through W+WHW^+W^-H production

    Full text link
    For a generic Higgs boson, measuring the relative sign and magnitude of its couplings with the WW and ZZ bosons is essential in determining its origin. Such a test is also indispensable for the 125-GeV Higgs boson. We propose that the ratio of the HWWHWW and HZZHZZ couplings λWZ\lambda_{WZ} can be directly determined through the W+WHW^+W^-H production, where HH denotes a generic Higgs boson, owing to the tree-level interference effect. While this is impractical at the LHC due to the limited sensitivity, it can be done at future e+ee^+e^- colliders, such as a 500-GeV ILC with the beam polarization P(e,e+)=(0.8,+0.3)P(e^-,e^+)=(-0.8,+0.3) in the jj±bbjj\ell^{\pm}bb and ±±jj\ell^{\pm}\ell^{\pm}\ell^{\mp}jj channels. The discovery potential of a general ratio and the power to discriminate it from the SM value are studied in detail. Combining the cross section of e+eW+WHe^+e^-\to W^+ W^- H with the measurements of HZZHZZ coupling at the HL-LHC, one can further improve the sensitivity of λWZ\lambda_{WZ}.Comment: 24 pages, 10 figures, 2 table

    Coherent transport of armchair graphene constrictions

    Full text link
    The coherent transport properties of armchair graphene nanoconstrictions(GNC) are studied using tight-binding approach and Green's function method. We find a non-bonding state at zero Fermi energy which results in a zero conductance valley, when a single vacancy locates at y=3n±1y=3n\pm 1 of a perfect metallic armchair graphene nanoribbon(aGNR). However, the non-bonding state doesn't exist when a vacancy locates at y=3n, and the conductance behavior of lowest conducting channel will not be affected by the vacancy. For the square-shaped armchair GNC consisting of three metallic aGNR segments, resonant tunneling behavior is observed in the single channel energy region. We find that the presence of localized edge state locating at the zigzag boundary can affect the resonant tunneling severely. A simplified one dimensional model is put forward at last, which explains the resonant tunneling behavior of armchair GNC very well.Comment: 6 pages, 11 figure

    Holographic Superconductors in Quasi-topological Gravity

    Full text link
    In this paper we study (3+1) dimensional holographic superconductors in quasi-topological gravity which is recently proposed by R. Myers {\it et.al.}. Through both analytical and numerical analysis, we find in general the condensation becomes harder with the increase of coupling parameters of higher curvature terms. In particular, comparing with those in ordinary Gauss-Bonnet gravity, we find that positive cubic corrections in quasi-topological gravity suppress the condensation while negative cubic terms make it easier. We also calculate the conductivity numerically for various coupling parameters. It turns out that the universal relation of ωg/Tc8\omega_g/T_c\simeq 8 is unstable and this ratio becomes larger with the increase of the coupling parameters. A brief discussion on the condensation from the CFT side is also presented.Comment: 23 pages, 28 figures, accepted for publication in JHE

    Identity-Aware Textual-Visual Matching with Latent Co-attention

    Full text link
    Textual-visual matching aims at measuring similarities between sentence descriptions and images. Most existing methods tackle this problem without effectively utilizing identity-level annotations. In this paper, we propose an identity-aware two-stage framework for the textual-visual matching problem. Our stage-1 CNN-LSTM network learns to embed cross-modal features with a novel Cross-Modal Cross-Entropy (CMCE) loss. The stage-1 network is able to efficiently screen easy incorrect matchings and also provide initial training point for the stage-2 training. The stage-2 CNN-LSTM network refines the matching results with a latent co-attention mechanism. The spatial attention relates each word with corresponding image regions while the latent semantic attention aligns different sentence structures to make the matching results more robust to sentence structure variations. Extensive experiments on three datasets with identity-level annotations show that our framework outperforms state-of-the-art approaches by large margins.Comment: Accepted to ICCV 201

    BSB\to S Transition Form Factors in the PQCD approach

    Full text link
    Under two different scenarios for the light scalar mesons, we investigate the transition form factors of B(Bs)B(B_s) mesons decay into a scalar meson in the perturbative QCD approach. In the large recoiling region, the form factors are dominated by the short-distance dynamics and can be calculated using perturbation theory. We adopt the dipole parametrization to recast the q2q^2 dependence of the form factors. Since the decay constants defined by the scalar current are large, our predictions on the BSB\to S form factors are much larger than the BPB\to P transitions, especially in the second scenario. Contributions from various light-cone distribution amplitudes (LCDAs) are elaborated and we find that the twist-3 LCDAs provide more than a half contributions to the form factors. The two terms of the twist-2 LCDAs give destructive contributions in the first scenario while they give constructive contributions in the second scenario. With the form factors, we also predict the decay width and branching ratios of the semileptonic BSlνˉB\to Sl\bar\nu and BSl+lB\to Sl^+l^- decays. The branching ratios of BSlνˉB\to Sl\bar\nu channels are found to have the order of 10410^{-4} while those of BSl+lB\to Sl^+l^- have the order of 10710^{-7}. These predictions can be tested by the future experiments.Comment: 20 pages, 31 figure

    Possible singlet and triplet superconductivity on honeycomb lattice

    Full text link
    We study the possible superconducting pairing symmetry mediated by spin and charge fluctuations on the honeycomb lattice using the extended Hubbard model and the random-phase-approximation method. From 2%2\% to 20%20\% doping levels, a spin-singlet dx2y2+idxyd_{x^{2}-y^{2}}+id_{xy}-wave is shown to be the leading superconducting pairing symmetry when only the on-site Coulomb interaction UU is considered, with the gap function being a mixture of the nearest-neighbor and next-nearest-neighbor pairings. When the offset of the energy level between the two sublattices exceeds a critical value, the most favorable pairing is a spin-triplet ff-wave which is mainly composed of the next-nearest-neighbor pairing. We show that the next-nearest-neighbor Coulomb interaction VV is also in favor of the spin-triplet ff-wave pairing.Comment: 6 pages, 4 figure
    corecore