31,929 research outputs found

    Delayed Onset and Fast Rise of Prompt Optical-UV Emission from Gamma-Ray Bursts in Molecular Clouds

    Full text link
    Observations imply that long \gamma-ray bursts (GRBs) are originated from explosions of massive stars, therefore they may occur in the molecular clouds where their progenitors were born. We show here that the prompt optical-UV emission from GRBs may be delayed due to the dust extinction, which can well explain the observed optical delayed onset and fast rise in GRB 080319B. The density and the size of the molecular cloud around GRB 080319B are roughly constrained to be \sim10^3cm^{-3} and \sim 8pc, respectively. We also investigate the other GRBs with prompt optical-UV data, and find similar values of the densities and sizes of the local molecular clouds. The future observations of prompt optical-UV emission from GRBs in subsecond timescale, e.g., by UFFO-Pathfinder and SVOM-GWAC, will provide more evidence and probes of the local GRB environments.Comment: 15 pages, 5 figures, RAA 13 (2013) 57-70, typo correctio

    Modeling Surface Appearance from a Single Photograph using Self-augmented Convolutional Neural Networks

    Full text link
    We present a convolutional neural network (CNN) based solution for modeling physically plausible spatially varying surface reflectance functions (SVBRDF) from a single photograph of a planar material sample under unknown natural illumination. Gathering a sufficiently large set of labeled training pairs consisting of photographs of SVBRDF samples and corresponding reflectance parameters, is a difficult and arduous process. To reduce the amount of required labeled training data, we propose to leverage the appearance information embedded in unlabeled images of spatially varying materials to self-augment the training process. Starting from an initial approximative network obtained from a small set of labeled training pairs, we estimate provisional model parameters for each unlabeled training exemplar. Given this provisional reflectance estimate, we then synthesize a novel temporary labeled training pair by rendering the exact corresponding image under a new lighting condition. After refining the network using these additional training samples, we re-estimate the provisional model parameters for the unlabeled data and repeat the self-augmentation process until convergence. We demonstrate the efficacy of the proposed network structure on spatially varying wood, metals, and plastics, as well as thoroughly validate the effectiveness of the self-augmentation training process.Comment: Accepted to SIGGRAPH 201

    Implications on η\eta-η\eta'-glueball mixing from Bd/sJ/Ψη()B_{d/s} \to J/\Psi \eta^{(')} Decays

    Full text link
    We point out that the recent Belle measurements of the Bd/sJ/Ψη()B_{d/s} \to J/\Psi \eta^{(')} decays imply large pseudoscalar glueball contents in the η()\eta^{(\prime)} meson. These decays are studied in the perturbative QCD (PQCD) approach, considering the η\eta-η\eta'-GG mixing, where GG represents the pseudoscalar glueball. It is shown that the PQCD predictions for the Bd/sJ/Ψη()B_{d/s} \to J/\Psi \eta^{(')} branching ratios agree well with the data for the mixing angle ϕG30\phi_G\approx 30^\circ between the flavor-singlet state and the pure pseudoscalar glueball. Extending the formalism to the η\eta-η\eta'-GG-ηc\eta_c tetramixing, the abnormally large observed BdKηB_d\to K\eta' branching ratios are also explained. The proposed mixing formalism is applicable to other heavy meson decays into η()\eta^{(\prime)} mesons, and could be tested by future LHCb and Super-BB factory data.Comment: Improved version, references added, 7 pages, 1 figur

    Study of the weak annihilation contributions in charmless BsVVB_s\to VV decays

    Full text link
    In this paper, in order to probe the spectator-scattering and weak annihilation contributions in charmless BsVVB_s\to VV (where VV stands for a light vector meson) decays, we perform the χ2\chi^2-analyses for the end-point parameters within the QCD factorization framework, under the constraints from the measured Bˉs\bar B_{s}\toρ0ϕ\rho^0\phi, ϕK0\phi K^{*0}, ϕϕ\phi \phi and K0Kˉ0K^{*0}\bar K^{*0} decays. The fitted results indicate that the end-point parameters in the factorizable and nonfactorizable annihilation topologies are non-universal, which is also favored by the charmless BPPB\to PP and PVPV (where PP stands for a light pseudo-scalar meson) decays observed in the previous work. Moreover, the abnormal polarization fractions fL,(BˉsK0Kˉ0)=(20.1±7.0)%,(58.4±8.5)%f_{L,\bot}(\bar B_{s}\to K^{*0}\bar K^{*0})=(20.1\pm7.0)\%\,,(58.4\pm8.5)\% measured by the LHCb collaboration can be reconciled through the weak annihilation corrections. However, the branching ratio of BˉsϕK0\bar B_{s}\to\phi K^{*0} decay exhibits a tension between the data and theoretical result, which dominates the contributions to χmin2\chi_{\rm min}^2 in the fits. Using the fitted end-point parameters, we update the theoretical results for the charmless BsVVB_s\to VV decays, which will be further tested by the LHCb and Belle-II experiments in the near future.Comment: 31 pages, 4 figures, 6 table

    Planck Constraints on Holographic Dark Energy

    Full text link
    We perform a detailed investigation on the cosmological constraints on the holographic dark energy (HDE) model by using the Planck data. HDE can provide a good fit to Planck high-l (l>40) temperature power spectrum, while the discrepancy at l=20-40 found in LCDM remains unsolved in HDE. The Planck data alone can lead to strong and reliable constraint on the HDE parameter c. At 68% CL, we get c=0.508+-0.207 with Planck+WP+lensing, favoring the present phantom HDE at > 2sigma CL. Comparably, by using WMAP9 alone we cannot get interesting constraint on c. By combining Planck+WP with the BAO measurements from 6dFGS+SDSS DR7(R)+BOSS DR9, the H0 measurement from HST, the SNLS3 and Union2.1 SNIa data sets, we get 68% CL constraints c=0.484+-0.070, 0.474+-0.049, 0.594+-0.051 and 0.642+-0.066. Constraints can be improved by 2%-15% if we further add the Planck lensing data. Compared with the WMAP9 results, the Planck results reduce the error by 30%-60%, and prefer a phantom-like HDE at higher CL. We find no evident tension between Planck and BAO/HST. Especially, the strong correlation between Omegam h^3 and dark energy parameters is helpful in relieving the tension between Planck and HST. The residual chi^2_{Planck+WP+HST}-chi^2_{Planck+WP} is 7.8 in LCDM, and is reduced to 1.0 or 0.3 if we switch dark energy to the w model or the holographic model. We find SNLS3 is in tension with all other data sets; for Planck+WP, WMAP9 and BAO+HST, the corresponding Delta chi^2 is 6.4, 3.5 and 4.1, respectively. Comparably, Union2.1 is consistent with these data sets, but the combination Union2.1+BAO+HST is in tension with Planck+WP+lensing, corresponding to a Delta chi^2 8.6 (1.4% probability). Thus, it is not reasonable to perform an all-combined (CMB+SNIa+BAO+HST) analysis for HDE when using the Planck data. Our tightest self-consistent constraint is c=0.495+-0.039 obtained from Planck+WP+BAO+HST+lensing.Comment: 29 pages, 11 figures, 3 tables; version accepted for publication in JCA
    corecore