4 research outputs found

    Preserving Both Privacy and Utility in Network Trace Anonymization

    Full text link
    As network security monitoring grows more sophisticated, there is an increasing need for outsourcing such tasks to third-party analysts. However, organizations are usually reluctant to share their network traces due to privacy concerns over sensitive information, e.g., network and system configuration, which may potentially be exploited for attacks. In cases where data owners are convinced to share their network traces, the data are typically subjected to certain anonymization techniques, e.g., CryptoPAn, which replaces real IP addresses with prefix-preserving pseudonyms. However, most such techniques either are vulnerable to adversaries with prior knowledge about some network flows in the traces, or require heavy data sanitization or perturbation, both of which may result in a significant loss of data utility. In this paper, we aim to preserve both privacy and utility through shifting the trade-off from between privacy and utility to between privacy and computational cost. The key idea is for the analysts to generate and analyze multiple anonymized views of the original network traces; those views are designed to be sufficiently indistinguishable even to adversaries armed with prior knowledge, which preserves the privacy, whereas one of the views will yield true analysis results privately retrieved by the data owner, which preserves the utility. We present the general approach and instantiate it based on CryptoPAn. We formally analyze the privacy of our solution and experimentally evaluate it using real network traces provided by a major ISP. The results show that our approach can significantly reduce the level of information leakage (e.g., less than 1\% of the information leaked by CryptoPAn) with comparable utility

    A Privacy-Preserving, Accountable and Spam-Resilient Geo-Marketplace

    Full text link
    Mobile devices with rich features can record videos, traffic parameters or air quality readings along user trajectories. Although such data may be valuable, users are seldom rewarded for collecting them. Emerging digital marketplaces allow owners to advertise their data to interested buyers. We focus on geo-marketplaces, where buyers search data based on geo-tags. Such marketplaces present significant challenges. First, if owners upload data with revealed geo-tags, they expose themselves to serious privacy risks. Second, owners must be accountable for advertised data, and must not be allowed to subsequently alter geo-tags. Third, such a system may be vulnerable to intensive spam activities, where dishonest owners flood the system with fake advertisements. We propose a geo-marketplace that addresses all these concerns. We employ searchable encryption, digital commitments, and blockchain to protect the location privacy of owners while at the same time incorporating accountability and spam-resilience mechanisms. We implement a prototype with two alternative designs that obtain distinct trade-offs between trust assumptions and performance. Our experiments on real location data show that one can achieve the above design goals with practical performance and reasonable financial overhead.Comment: SIGSPATIAL'19, 10 page

    Practical techniques for searches on encrypted data

    No full text
    corecore