1,228 research outputs found
Plasma NT pro-BNP, hs-CRP and big-ET levels at admission as prognostic markers of survival in hospitalized patients with dilated cardiomyopathy: a single-center cohort study
BACKGROUND: Circulating N-terminal pro-B-type natriuretic peptide (NT pro-BNP), high- sensitivity C-reactive protein (hs-CRP) and big endothelin (big-ET) have been shown to be increased in heart failure and to contribute to both hemodynamic deterioration and cardiovascular remodeling. Here, we examined the prognostic value of the three neurohormones at admission in a population of hospitalized patients with dilated cardiomyopathy (DCM). METHODS AND RESULTS: This cohort study was undertaken in 622 hospitalized patients with DCM in Fuwai Hospital from January 2005 to September 2011 (female 26.5%, 51.4 ± 14.6 years old). Standard demographics, echocardiography and routine blood samples were obtained shortly after admission. NT pro-BNP, hs-CRP and big-ET were measured, and their concentrations in relation to all-cause mortality were assessed through a mean follow-up of 2.6 ± 1.6 years. Kaplan-Meier curves showed that the all-cause mortality rates were higher in patients with NT pro-BNP > 2247 pmol/L compared to patients with NT pro-BNP < 2247 pmol/L (11.9% vs 34.8%, log-rank χ(2) = 35.588, P < 0.001), in patients with hs-CRP > 3.90 mg/L compared to patients with hs-CRP < 3.90 mg/L (12.8% vs 33.6%, log-rank χ(2) = 39.662, P < 0.001) and in patients with big-ET > 0.95 pmol/L compared to patients with big-ET <0.95 pmol/L (12.5% vs 31.0%, log-rank χ(2) = 17.890, P < 0.001). High circulating concentrations of NT pro-BNP (HR 2.217, 95% CI 1.015-4.846, P = 0.046) and hs-CRP (HR 1.922, 95% CI 1.236-2.988, P = 0.004), but not big-ET, in addition to left atrial diameter and fasting blood glucose, were independent predictors of the outcome defined as all-cause mortality. CONCLUSIONS: In a large population of patients with DCM, the circulating concentrations of NT pro-BNP and hs-CRP, but not big-ET, were independent markers of all-cause mortality
Tibetan sheep are better able to cope with low energy intake than Small-tailed Han sheep due to lower maintenance energy requirements and higher nutrient digestibilities
Tibetan sheep are indigenous to the Qinghai-Tibetan Plateau (QTP) and are well-adapted to and even thrive under the harsh alpine conditions. Small-tailed Han sheep were introduced to the plateau because of their high prolificacy and are maintained mainly in feedlots. Because of their different backgrounds, we hypothesised that Tibetan and Small-tailed Han sheep would differ in their utilization of energy intake and predicted that Tibetan sheep would cope better with low energy intake than Small-tailed Han sheep. To test this prediction, we determined nutrient digestibilities, energy requirements for maintenance and blood metabolite and hormone concentrations involved in energy metabolism in these breeds. Sheep of each breed (n = 24 of each, all wethers and 1.5 years of age) were distributed randomly into one of four groups and offered ad libitum diets of different digestible energy (DE) densities: 8.21, 9.33, 10.45 and 11.57 MJ DE/kg Dry matter (DM). Following 42 d of measuring feed intake, a 1-week digestion and metabolism experiment was done. DM intakes did not differ between breeds nor among treatments but, by design, DE intake increased linearly in both breeds as dietary energy level increased (P < 0.001). The average daily gain (ADG) was significantly greater in the Tibetan than Small-tailed Han sheep (P = 0.003) and increased linearly in both breeds (P < 0.001). In addition, from the regression analysis of ADG on DE intake, daily DE maintenance requirements were lower for Tibetan than for Small-tailed Han sheep (0.41 vs 0.50 MJ/BW0.75, P < 0.05). The DE and metabolizable energy (ME) digestibilities were higher in the Tibetan than Small-tailed Han sheep (P < 0.001) and increased linearly as the energy level increased in the diet (P < 0.001). At the lowest energy treatment, Tibetan sheep when compared with Small-tailed Han sheep, had: 1) higher serum glucose and glucagon, but lower insulin concentrations (P < 0.05), which indicated a higher capacity for gluconeogenesis and ability to regulate glucose metabolism; and 2) higher non-esterified fatty acids (NEFA) and lower very low density lipoprotein (VLDL) and triglyceride (TG) concentrations (P < 0.05), which indicated a higher capacity for NEFA oxidation but lower ability for triglyceride (TG) synthesis. We concluded that our prediction was supported as these differences between breeds conferred an advantage for Tibetan over Small-tailed Han sheep to cope better with low energy diets
An inventory of invasive alien species in China
Invasive alien species (IAS) are a major global challenge requiring urgent action, and the Strategic Plan for Biodiversity (2011–2020) of the Convention on Biological Diversity (CBD) includes a target on the issue. Meeting the target requires an understanding of invasion patterns. However, national or regional analyses of invasions are limited to developed countries. We identified 488 IAS in China’s terrestrial habitats, inland waters and marine ecosystems based on available literature and field work, including 171 animals, 265 plants, 26 fungi, 3 protists, 11 procaryots, and 12 viruses. Terrestrial plants account for 51.6% of the total number of IAS, and terrestrial invertebrates (104 species) for 21.3%. Of the total numbers, 67.9% of plant IAS and 34.8% of animal IAS were introduced intentionally. All other taxa were introduced unintentionally despite very few animal and plant species that invaded naturally. In terms of habitats, 64.3% of IAS occur on farmlands, 13.9% in forests, 8.4% in marine ecosystems, 7.3% in inland waters, and 6.1% in residential areas. Half of all IAS (51.1%) originate from North and South America, 18.3% from Europe, 17.3% from Asia not including China, 7.2% from Africa, 1.8% from Oceania, and the origin of the remaining 4.3% IAS is unknown. The distribution of IAS can be divided into three zones. Most IAS are distributed in coastal provinces and the Yunnan province; provinces in Middle China have fewer IAS, and most provinces in West China have the least number of IAS. Sites where IAS were first detected are mainly distributed in the coastal region, the Yunnan Province and the Xinjiang Uyghur Autonomous Region. The number of newly emerged IAS has been increasing since 1850. The cumulative number of firstly detected IAS grew exponentially
PPARβ/δ selectively regulates phenotypic features of age-related macular degeneration.
Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) is a nuclear receptor that regulates differentiation, inflammation, lipid metabolism, extracellular matrix remodeling, and angiogenesis in multiple tissues. These pathways are also central to the pathogenesis of age-related macular degeneration (AMD), the leading cause of vision loss globally. With the goal of identifying signaling pathways that may be important in the development of AMD, we investigated the impact of PPARβ/δ activation on ocular tissues affected in the disease. PPARβ/δ is expressed and can be activated in AMD vulnerable cells, including retinal pigment epithelial (RPE) and choroidal endothelial cells. Further, PPARβ/δ knockdown modulates AMD-related pathways selectively. Specifically, genetic ablation of Pparβ/δ in aged mice resulted in exacerbation of several phenotypic features of early dry AMD, but attenuation of experimentally induced choroidal neovascular (CNV) lesions. Antagonizing PPARβ/δ in both in vitro angiogenesis assays and in the in vivo experimentally induced CNV model, inhibited angiogenesis and angiogenic pathways, while ligand activation of PPARβ/δ, in vitro, decreased RPE lipid accumulation, characteristic of dry AMD. This study demonstrates for the first time, selective regulation of a nuclear receptor in the eye and establishes that selective targeting of PPARβ/δ may be a suitable strategy for treatment of different clinical sub-types of AMD
A Low Complexity 2D Pattern Synthesis Algorithm for Cylindrical Array
This paper proposes a 2D pattern synthesis algorithm for cylindrical array. According to the geometric characteristic of cylinder, we can regard a cylindrical array as an equivalent linear array whose elements are identical circular subarrays. Therefore, the beam pattern can be obtained by the product of the array factor of linear array and beam pattern of circular subarray. Then, the 2D beamforming can be realized by two 1D beamforming processes. We can prove that the complex excitation vector of a cylindrical array is the Kronecker product of linear array’s weight vector and circular array’s weight vector. By this algorithm of decomposition and reconstruction, the computational complexity of 2D beamforming could be significantly reduced. Finally, simulation results further illustrate the validity of the proposed method.</jats:p
A Voice Disease Detection Method Based on MFCCs and Shallow CNN
The incidence rate of voice diseases is increasing year by year. The use of
software for remote diagnosis is a technical development trend and has
important practical value. Among voice diseases, common diseases that cause
hoarseness include spasmodic dysphonia, vocal cord paralysis, vocal nodule, and
vocal cord polyp. This paper presents a voice disease detection method that can
be applied in a wide range of clinical. We cooperated with Xiangya Hospital of
Central South University to collect voice samples from sixty-one different
patients. The Mel Frequency Cepstrum Coefficient (MFCC) parameters are
extracted as input features to describe the voice in the form of data. An
innovative model combining MFCC parameters and single convolution layer CNN is
proposed for fast calculation and classification. The highest accuracy we
achieved was 92%, it is fully ahead of the original research results and
internationally advanced. And we use Advanced Voice Function Assessment
Databases (AVFAD) to evaluate the generalization ability of the method we
proposed, which achieved an accuracy rate of 98%. Experiments on clinical and
standard datasets show that for the pathological detection of voice diseases,
our method has greatly improved in accuracy and computational efficiency
Influence of secondary air on combustion process and pollutant emissions in a sludge fluidized bed incinerator
Numerical simulations of a 120 t/d sludge fluidized bed incinerator were performed using Computational Particle Fluid Dynamics (CPFD) method. The effects of secondary air on temperature distribution, gas distribution and pollutant emissions were investigated. The results show that the secondary air with a tangential arrangement significantly enhance flow field disturbance in the furnace compared with the original opposed arrangement. This can increase temperature and temperature distribution uniformity in the dilute phase region. The tangential arrangement facilitates vortex formation within the furnace, thereby accelerating gas-solid mixing and enhancing O2 concentration uniformity in radial sections. Compared with the opposed arrangement, the tangential arrangement can promote the oxidation of CO and SO2 while enabling effective reductive removal of NO. The computational results demonstrate that under the tangential arrangement, CO emissions at the furnace outlet decrease by 96.44%, with simultaneous reductions of 6.80% for NO and 53.42% for SO2, indicating significant improvements in comprehensive pollutant emissions control
The Effect of Different Rollover Conditions of the Vibrator on Human Injury
Vibrator, as a crucial vehicle of oil and gas exploration, is challenged by the complex terrains. The probability of rollover accident is therefore high in bumpy terrain in which the drivers\u27 life is seriously threatened. Finite element numerical analysis was used to study the injury of the driver\u27s head, neck and chest in the rollover accidents of domestic KZ-28 type vibrator on different conditions. The injuries of three parts were evaluated based on the human injury criteria. Driver\u27s safety on different rollover conditions was comparatively analyzed. The results indicated that the injury degree of human head caused by vibrator rollover accident is at a low level. In comparison with head, the human neck is more likely to be injured than head and chest. In three different rollover accidents, the injury degree of drivers on the rollover condition of the vibrator colliding with slope multiply is most serious. Besides, the results demonstrated that the safety of driver can be enhanced by the rollover protective structures of KZ-28 type vibrator. This structure requires to be improved in energy absorption and isolation buffer. In addition, the safety belt and collision angle between the cab and the ground are also significantly associated with the injury degree. This research is of guiding significance to vibrator driver for taking safety protection measures
Phylogenetic Evolution and Phylogeography of Tibetan Sheep Based on mtDNA D-Loop Sequences
The molecular and population genetic evidence of the phylogenetic status of the Tibetan sheep (Ovis aries) is not well understood, and little is known about this species’ genetic diversity. Phylogenetic relationship and phylogeography of 636 individual Tibetan sheep which were collected from the Qinghai-Tibetan Plateau area in China and were assessed using 642 complete sequences of the mitochondrial DNA D-loop. Reference data were obtained from the six reference breed sequences available in GenBank. Phylogeography analysis showed that all four previously defined haplogroups were found in the 15 Tibetan sheep populations but that only one haplogroup was found in Linzhou sheep. Furthermore, clustering analysis divided the 636 individual Tibetan sheep into at least two clusters. The estimated genetic distance and genetic differentiation associate with altitude, suggesting geographic and adaptive effects in Tibetan sheep. These results contribute to the knowledge of Tibetan sheep populations and will help inform future conservation programs about the Tibetan sheep native to the Qinghai-Tibetan Plateau in China
- …
