41,611 research outputs found
Randomness Extraction in AC0 and with Small Locality
Randomness extractors, which extract high quality (almost-uniform) random
bits from biased random sources, are important objects both in theory and in
practice. While there have been significant progress in obtaining near optimal
constructions of randomness extractors in various settings, the computational
complexity of randomness extractors is still much less studied. In particular,
it is not clear whether randomness extractors with good parameters can be
computed in several interesting complexity classes that are much weaker than P.
In this paper we study randomness extractors in the following two models of
computation: (1) constant-depth circuits (AC0), and (2) the local computation
model. Previous work in these models, such as [Vio05a], [GVW15] and [BG13],
only achieve constructions with weak parameters. In this work we give explicit
constructions of randomness extractors with much better parameters. As an
application, we use our AC0 extractors to study pseudorandom generators in AC0,
and show that we can construct both cryptographic pseudorandom generators
(under reasonable computational assumptions) and unconditional pseudorandom
generators for space bounded computation with very good parameters.
Our constructions combine several previous techniques in randomness
extractors, as well as introduce new techniques to reduce or preserve the
complexity of extractors, which may be of independent interest. These include
(1) a general way to reduce the error of strong seeded extractors while
preserving the AC0 property and small locality, and (2) a seeded randomness
condenser with small locality.Comment: 62 page
A probabilistic method for gradient estimates of some geometric flows
In general, gradient estimates are very important and necessary for deriving
convergence results in different geometric flows, and most of them are obtained
by analytic methods. In this paper, we will apply a stochastic approach to
systematically give gradient estimates for some important geometric quantities
under the Ricci flow, the mean curvature flow, the forced mean curvature flow
and the Yamabe flow respectively. Our conclusion gives another example that
probabilistic tools can be used to simplify proofs for some problems in
geometric analysis.Comment: 22 pages. Minor revision to v1. Accepted for publication in
Stochastic Processes and their Application
A study of allosteric binding behaviour of a 1,3-alternate thiacalix[4]arene-based receptor using fluorescence signal
A novel heteroditopic thiacalix[4]arene receptor L possessing 1,3-alternate conformation, which contains two pyrene moieties attached to the lower rim via urea linkages together with a crown ether moiety appended at the opposite side of the thiacalix[4]arene cavity, has been synthesized. The complexation behaviour of receptor L was studied by means of fluorescence spectra and ¹H NMR titration experiments in the presence of K⁺ ions and a variety of other anions. The results suggested that receptor L can complex efficiently via the urea cavity or the crown ether moiety, and a positive/negative allosteric effect operating in receptor L was observed
- …
