698 research outputs found
Combined Pricing and Portfolio Option Procurement
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90569/1/poms1255.pd
Highly Sensitive Surface-Enhanced Raman Scattering Sensing of Heparin Based on Antiaggregation of Functionalized Silver Nanoparticles
We report a simple and sensitive surface-enhanced Raman scattering (SERS) platform for the detection of heparin, based on antiaggregation of 4-mercaptopyridine (4-MPY) functionalized silver nanoparticles (Ag NPs). Here, protamine was employed as a medium for inducing the aggregation of negatively charged 4-MPY functionalized Ag NPs through surface electrostatic interaction, which resulted in significantly enhanced Raman signal of the Raman reporter. However, in the presence of heparin, the interaction between heparin and protamine decreased the concentration of free protamine, which dissipated the aggregated 4-MPY functionalized Ag NPs and thus decreased Raman enhancement effect. The degree of aggregation and Raman enhancement effect was proportional to the concentration of added heparin. Under optimized assay conditions, good linear relationship was obtained over the range of 0.5-150 ng/mL (R-2 = 0.998) with a minimum detectable concentration of 0.5 ng/mL in standard aqueous solution. Furthermore, the developed method was also successfully applied for detecting heparin in fetal bovine serum samples with a linear range of 1-400 ng/mL.We report a simple and sensitive surface-enhanced Raman scattering (SERS) platform for the detection of heparin, based on antiaggregation of 4-mercaptopyridine (4-MPY) functionalized silver nanoparticles (Ag NPs). Here, protamine was employed as a medium for inducing the aggregation of negatively charged 4-MPY functionalized Ag NPs through surface electrostatic interaction, which resulted in significantly enhanced Raman signal of the Raman reporter. However, in the presence of heparin, the interaction between heparin and protamine decreased the concentration of free protamine, which dissipated the aggregated 4-MPY functionalized Ag NPs and thus decreased Raman enhancement effect. The degree of aggregation and Raman enhancement effect was proportional to the concentration of added heparin. Under optimized assay conditions, good linear relationship was obtained over the range of 0.5-150 ng/mL (R-2 = 0.998) with a minimum detectable concentration of 0.5 ng/mL in standard aqueous solution. Furthermore, the developed method was also successfully applied for detecting heparin in fetal bovine serum samples with a linear range of 1-400 ng/mL
Ultrasensitive surface-enhanced Raman scattering detection of trypsin based on anti-aggregation of 4-mercaptopyridine-functionalized silver nanoparticles: an optical sensing platform toward proteases
In this work, a simple and sensitive surface-enhanced Raman scattering (SERS) strategy was developed for recognition and detection of trypsin, by using anti-aggregation of 4-mercaptopyridine (4-MPY)-functionalized silver nanoparticles (AgNPs) based on the interaction between protamine and trypsin. The polycationic protamine not only served as a substrate for enzyme hydrolysis but also worked as a medium for SERS enhancement, which could bind negatively charged 4-MPY-functionalized AgNPs and induce their aggregation. The hydrolysis catalyzed with trypsin in sample solution decreased the concentration of free protamine, resulting in the dispersion of AgNPs and thus decreasing the Raman intensity of 4-MPY, by which the trypsin could be sensed optically. A detection level down to 0.1 ng mL(-1) for trypsin was obtained. The induced accumulation of AgNPs modified with Raman reporter 4-MPY largely enhanced the SERS responses. A good linearity was found within the wide range over five orders of magnitude and reasonable relative standard deviations (between 2.4 and 11.6%) were attained. By using trypsin as a model, the new concept can provide an excellent platform for ultrasensitive SERS measurements of various proteases/enzymes which can lead to nanoparticles stability change through catalyzed hydrolysis toward substrate.In this work, a simple and sensitive surface-enhanced Raman scattering (SERS) strategy was developed for recognition and detection of trypsin, by using anti-aggregation of 4-mercaptopyridine (4-MPY)-functionalized silver nanoparticles (AgNPs) based on the interaction between protamine and trypsin. The polycationic protamine not only served as a substrate for enzyme hydrolysis but also worked as a medium for SERS enhancement, which could bind negatively charged 4-MPY-functionalized AgNPs and induce their aggregation. The hydrolysis catalyzed with trypsin in sample solution decreased the concentration of free protamine, resulting in the dispersion of AgNPs and thus decreasing the Raman intensity of 4-MPY, by which the trypsin could be sensed optically. A detection level down to 0.1 ng mL(-1) for trypsin was obtained. The induced accumulation of AgNPs modified with Raman reporter 4-MPY largely enhanced the SERS responses. A good linearity was found within the wide range over five orders of magnitude and reasonable relative standard deviations (between 2.4 and 11.6%) were attained. By using trypsin as a model, the new concept can provide an excellent platform for ultrasensitive SERS measurements of various proteases/enzymes which can lead to nanoparticles stability change through catalyzed hydrolysis toward substrate
Exploring the dark matter inelastic frontier with 79.6 days of PandaX-II data
We report here the results of searching for inelastic scattering of dark
matter (initial and final state dark matter particles differ by a small mass
splitting) with nucleon with the first 79.6-day of PandaX-II data (Run 9). We
set the upper limits for the spin independent WIMP-nucleon scattering cross
section up to a mass splitting of 300 keV/c at two benchmark dark matter
masses of 1 and 10 TeV/c.Comment: 5 pages, 6 figure
Atomic-layer-deposited ultrafine MoS2 nanocrystals on cobalt foam for efficient and stable electrochemical oxygen evolution
Ultrafine molybdenum sulfide (MoS2) nanocrystals are grown on a porous cobalt (Co) foam current collector by atomic layer deposition (ALD) using molybdenum hexacarbonyl and hydrogen sulfide as precursors. When used to catalyze the oxygen evolution reaction (OER), the optimal Co@MoS2 electrode, even with a MoS2 loading as small as 0.06 mg cm-2, exhibits a large cathodic shift of ca. 200 mV in the onset potential (the potential at which the current density is 5 mA cm-2), a low overpotential of only 270 mV to attain an anodic current density of 10 mA cm-2, much smaller charge transfer resistance and substantially improved long-term stability at both low and high current densities, with respect to the bare Co foam electrode, showing substantial promise for use as an efficient, low-cost and durable anode in water electrolyzers.L. F. Liu acknowledges the support of the FCT Investigator grant (no. IF/01595/2014) and the Exploratory grant (No. IF/01595/2014/CP1247/CT0001) from the Portuguese Foundation of Science & Technology (FCT). D. H. Xiong and W. Li are thankful for the financial support from Marie Curie Action COFUND fellowships (NanoTrainforGrowth, Grant Agreement no. 600375) under the FP7 framework. D. H. Xiong also acknowledges the financial support from the China Postdoctoral Science Foundation (No. 2015 T80847). This work was partly funded by the European Commission Horizon 2020 project "CritCat" (Grant Agreement No. 686053).info:eu-repo/semantics/publishedVersio
Ultrasensitive surface-enhanced Raman scattering detection of trypsin based on anti-aggregation of 4-mercaptopyridine-functionalized silver nanoparticles: an optical sensing platform toward proteases
Investigation of Metallic Elliptical Nano-Pinholes Structure-Based Plasmonic Lenses: From Design to Testing
Development of Diagnostic SCAR Markers for Genomic DNA Amplifications in Breast Carcinoma by DNA Cloning of High-GC RAMP-PCR Fragments
Cancer is genetically heterogeneous regarding to molecular genetic characteristics and pathogenic pathways. A wide spectrum of biomarkers, including DNA markers, is used in determining genomic instability, molecular subtype determination and disease prognosis, and estimating sensitivity to different drugs in clinical practice. In a previous study, we developed highly effective DNA markers using improved random amplified polymorphic DNA (RAPD) with high-GC primers, which is a valuable approach for the genetic authentication of medicinal plants. In this study, we applied this effective DNA marker technique to generate genetic fingerprints that detect genomic alterations in human breast cancer tissues and then developed sequence-characterized amplified region (SCAR) markers. Three SCAR markers (BC10-1, BC13-4 and BC31-2) had high levels of genomic DNA amplification in breast cancer. The PHKG2 and RNF40 genes are either overlapping or close to the sequences of SCAR marker BC13-4, while SCAR marker BC10-1 is in the intron and overlap the DPEP1 gene, suggesting that alterations in the expression of these genes could contribute to cancer progression. Screening of breast cancer cell lines showed that the mRNA expression levels for the PHKG2 and DPEP1 were lower in non-tumorigenic mammary epithelial cell MCF10A, but elevated in other cell lines. The DPEP1 mRNA level in invasive ductal carcinoma specimens was significantly higher than that of the adjacent normal tissues in women. Taken together, high-GC RAMP-PCR provides greater efficacy in measuring genomic DNA amplifications, deletion or copy number variations. Furthermore, SCAR markers BC10-1 and BC13-4 might be useful diagnostic markers for breast cancer carcinomas
Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment
We report a new search of weakly interacting massive particles (WIMPs) using
the combined low background data sets in 2016 and 2017 from the PandaX-II
experiment in China. The latest data set contains a new exposure of 77.1 live
day, with the background reduced to a level of 0.8 evt/kg/day,
improved by a factor of 2.5 in comparison to the previous run in 2016. No
excess events were found above the expected background. With a total exposure
of 5.4 kg day, the most stringent upper limit on spin-independent
WIMP-nucleon cross section was set for a WIMP with mass larger than 100
GeV/c, with the lowest exclusion at 8.6 cm at 40
GeV/c.Comment: Supplementary materials at
https://pandax.sjtu.edu.cn/articles/2nd/supplemental.pdf version 2 as
accepted by PR
Recommended from our members
FLOWERING LOCUS T2 regulates spike development and fertility in temperate cereals
FLOWERING LOCUS T2 (FT2) is the closest paralog of the FT1 flowering gene in the temperate grasses. Here we show that overexpression of FT2 in Brachypodium distachyon and barley results in precocious flowering and reduced spikelet number, while down-regulation by RNA interference results in delayed flowering and a reduced percentage of filled florets. Similarly, truncation mutations of FT2 homeologs in tetraploid wheat delayed flowering (2-4 d) and reduced fertility. The wheat ft2 mutants also showed a significant increase in the number of spikelets per spike, with a longer spike development period potentially contributing to the delayed heading time. In the wheat leaves, FT2 was expressed later than FT1, suggesting a relatively smaller role for FT2 in the initiation of the reproductive phase. FT2 transcripts were detected in the shoot apical meristem and increased during early spike development. Transversal sections of the developing spike showed the highest FT2 transcript levels in the distal part, where new spikelets are formed. Our results suggest that, in wheat, FT2 plays an important role in spike development and fertility and a limited role in the timing of the transition between the vegetative and reproductive shoot apical meristem
- …
