3,546 research outputs found
Latency-Optimized and Energy-Efficient MAC Protocol for Underwater Acoustic Sensor Networks: A Cross-Layer Approach
Considering the energy constraint for fixed sensor nodes and the unacceptable long propagation delay, especially for latency sensitive applications of underwater acoustic sensor networks, we propose a MAC protocol that is latency-optimized and energy-efficient scheme and combines the physical layer and the MAC layer to shorten transmission delay. On physical layer, we apply convolution coding and interleaver for transmitted information. Moreover, dynamic code rate is exploited at the receiver side to accelerate data reception rate. On MAC layer, unfixed frame length scheme is applied to reduce transmission delay, and to ensure the data successful transmission rate at the same time. Furthermore, we propose a network topology: an underwater acoustic sensor network with mobile agent. Through fully utilizing the supper capabilities on computation and mobility of autonomous underwater vehicles, the energy consumption for fixed sensor nodes can be extremely reduced, so that the lifetime of networks is extended
An Android-Based Mechanism for Energy Efficient Localization Depending on Indoor/Outdoor Context
Today, there is widespread use of mobile applications that take advantage of a user\u27s location. Popular usages of location information include geotagging on social media websites, driver assistance and navigation, and querying nearby locations of interest. However, the average user may not realize the high energy costs of using location services (namely the GPS) or may not make smart decisions regarding when to enable or disable location services-for example, when indoors. As a result, a mechanism that can make these decisions on the user\u27s behalf can significantly improve a smartphone\u27s battery life. In this paper, we present an energy consumption analysis of the localization methods available on modern Android smartphones and propose the addition of an indoor localization mechanism that can be triggered depending on whether a user is detected to be indoors or outdoors. Based on our energy analysis and implementation of our proposed system, we provide experimental results-monitoring battery life over time-and show that an indoor localization method triggered by indoor or outdoor context can improve smartphone battery life and, potentially, location accuracy
Virtual Track: Applications and Challenges of the RFID System on Roads
The RFID System on Roads (RSR), which includes RFID tags deployed on roads and RFID readers installed on vehicles, is an essential platform for future transportation systems. It can provide unique features that are missing from the current systems, including lane level position, road traffic control information, vehicle distance estimation, real time driving behavior analysis, and so on. Based on these features, several novel vehicular applications can be implemented, which can significantly improve the transportation safety and efficiency. Specifically, the proposed applications on RSR include Assisted Navigation Systems, Electrical Traffic Control, Unmanned Patrol Systems, Vehicle Distance Estimation, Parking Assistant System, Route Tracing and Access Control, Unmanned Ground Vehicles. We also investigate the corresponding engineering/system and research challenges for implementing RSR and its applications in this article
Enabling smartphone-based HD video chats by cooperative transmissions in CRNs
Smartphones have been equipped with the cameras that can shoot HD videos, and the video chat apps such as Skype are becoming popular. We can, therefore, intuitively predict the trend that users are expecting to enjoy HD video chats via utilizing their smartphones. Most of the current Internet services, however, cannot support the live HD video transmissions because of their low uplink rate. In order to overcome this limit, we propose to offload the uplink transmissions to cooperative users via cognitive radio networks. Specifically, we first divide the video stream into several substreams according to the H.264/SVC standard and the cooperative users’ uplink rates. Then, the cooperative users are selected by employing our proposed optimal multiple stopping method. Finally, the substreams are assigned to the selected cooperative users by a 0-1 Knapsack-based allocation algorithm. The simulation results demonstrate that our proposed scheme can successfully support 720P HD video chats
Highly accurate model for prediction of lung nodule malignancy with CT scans
Computed tomography (CT) examinations are commonly used to predict lung
nodule malignancy in patients, which are shown to improve noninvasive early
diagnosis of lung cancer. It remains challenging for computational approaches
to achieve performance comparable to experienced radiologists. Here we present
NoduleX, a systematic approach to predict lung nodule malignancy from CT data,
based on deep learning convolutional neural networks (CNN). For training and
validation, we analyze >1000 lung nodules in images from the LIDC/IDRI cohort.
All nodules were identified and classified by four experienced thoracic
radiologists who participated in the LIDC project. NoduleX achieves high
accuracy for nodule malignancy classification, with an AUC of ~0.99. This is
commensurate with the analysis of the dataset by experienced radiologists. Our
approach, NoduleX, provides an effective framework for highly accurate nodule
malignancy prediction with the model trained on a large patient population. Our
results are replicable with software available at
http://bioinformatics.astate.edu/NoduleX
Real-space observation of short-period cubic lattice of skyrmions in MnGe
Emergent phenomena and functions arising from topological electron-spin
textures in real space or momentum space are attracting growing interest for
new concept of states of matter as well as for possible applications to
spintronics. One such example is a magnetic skyrmion, a topologically stable
nanoscale spin vortex structure characterized by a topological index.
Real-space regular arrays of skyrmions are described by combination of
multi-directional spin helixes. Nanoscale configurations and characteristics of
the two-dimensional skyrmion hexagonal-lattice have been revealed extensively
by real-space observations. Other three-dimensional forms of skyrmion lattices,
such as a cubic-lattice of skyrmions, are also anticipated to exist, yet their
direct observations remain elusive. Here we report real-space observations of
spin configurations of the skyrmion cubic-lattice in MnGe with a very short
period (~3 nm) and hence endowed with the largest skyrmion number density. The
skyrmion lattices parallel to the {100} atomic lattices are directly observed
using Lorentz transmission electron microscopes (Lorentz TEMs). It enables the
first simultaneous observation of magnetic skyrmions and underlying
atomic-lattice fringes. These results indicate the emergence of
skyrmion-antiskyrmion lattice in MnGe, which is a source of emergent
electromagnetic responses and will open a possibility of controlling
few-nanometer scale skyrmion lattices through atomic lattice modulations
Online auction-based relay selection for cooperative communication in CR networks
Cognitive radio and cooperative communication are two new network technologies. So, the combination of these two new technologies is a novel solution to solve the problem of spectrum scarcity. Two main challenges exist in the integration of cognitive radio and cooperative communication. First, there is a lack of incentives for the participating wireless devices to serve as relay nodes. Second, there is not an effective relay selection policy. In this paper, we propose an online auction-based relay selection scheme for cooperative communication in cognitive radio (CR) networks. Specifically, we design an auction scheme through adopting stopping theory. The proposed scheme ensures that the primary user (PU) can effectively select a CR relay to transmit its packets in a given time bound. In addition, we have analytically proven the truthfulness and the individual rationality of our online auction scheme. Extensive simulations demonstrate that the proposed relay selection scheme can always successfully and efficiently select a proper relay for a PU and can achieve a higher cooperative communication throughput compared with the conventional schemes
Targeting Cell Division Cycle 25 Homolog B To Regulate Influenza Virus Replication
Influenza virus is a worldwide global health concern causing seasonal morbidity mortality and economic burden. Chemotherapeutics is available; however, rapid emergence of drug-resistant influenza virus strains has reduced its efficacy. Thus, there is a need to discover novel antiviral agents. in this study, RNA interference (RNAi) was used to screen host genes required for influenza virus replication. One pro-influenza virus host gene identified was dual-specificity phosphatase cell division cycle 25 B (CDC25B). RNAi screening of CDC25B resulted in reduced influenza A virus replication, and a CDC25B small-molecule inhibitor (NSC95397) inhibited influenza A virus replication in a dose-dependent fashion. Viral RNA synthesis was reduced by NSC95397 in favor of increased beta interferon (IFN-beta) expression, and NSC95397 was found to interfere with nuclear localization and chromatin association of NS1, an influenza virus protein. As NS1 has been shown to be chromatin associated and to suppress host transcription, it is likely that CDC25B supports NS1 nuclear function to hijack host transcription machinery in favor of viral RNA synthesis, a process that is blocked by NSC95397. Importantly, NSC95397 treatment protects mice against lethal influenza virus challenge. the findings establish CDC25B as a pro-influenza A virus host factor that may be targeted as a novel influenza A therapeutic strategy.National Institutes of Health, National Institute of Allergy and Infectious DiseasesGeorgia Research AllianceUniv Georgia, Coll Vet Med, Dept Infect Dis, Athens, GA 30602 USAUniversidade Federal de São Paulo, UNIFESP, Dept Biol Sci, São Paulo, BrazilUniversidade Federal de São Paulo, UNIFESP, Dept Biol Sci, São Paulo, BrazilNational Institutes of Health, National Institute of Allergy and Infectious Diseases: HHSN266200700006CWeb of Scienc
- …
