5,533 research outputs found

    Microencapsulation Technologies for Corrosion Protective Coating Applications

    Get PDF
    Microencapsulation technologies for functional smart Coatings for autonomous corrosion control have been a research area of strong emphasis during the last decade. This work concerns the development of pH sensitive micro-containers (microparticles and microcapsules) for autonomous corrosion control. This paper presents an overview of the state-of-the-art in the field of microencapsulation for corrosion control applications, as well as the technical details of the pH sensitive microcontainer approach, such as selection criteria for corrosion indicators and corrosion inhibitors; the development and optimization of encapsulation methods; function evaluation before and after incorporation of the microcontainers into coatings; and further optimization to improve coating compatibility and performance

    Real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy

    Full text link
    Purpose: To develop an algorithm for real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy. Methods: Given a set of volumetric images of a patient at N breathing phases as the training data, we perform deformable image registration between a reference phase and the other N-1 phases, resulting in N-1 deformation vector fields (DVFs). These DVFs can be represented efficiently by a few eigenvectors and coefficients obtained from principal component analysis (PCA). By varying the PCA coefficients, we can generate new DVFs, which, when applied on the reference image, lead to new volumetric images. We then can reconstruct a volumetric image from a single projection image by optimizing the PCA coefficients such that its computed projection matches the measured one. The 3D location of the tumor can be derived by applying the inverted DVF on its position in the reference image. Our algorithm was implemented on graphics processing units (GPUs) to achieve real-time efficiency. We generated the training data using a realistic and dynamic mathematical phantom with 10 breathing phases. The testing data were 360 cone beam projections corresponding to one gantry rotation, simulated using the same phantom with a 50% increase in breathing amplitude. Results: The average relative image intensity error of the reconstructed volumetric images is 6.9% +/- 2.4%. The average 3D tumor localization error is 0.8 mm +/- 0.5 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for reconstructing a volumetric image from each projection is 0.24 seconds (range: 0.17 and 0.35 seconds). Conclusions: We have shown the feasibility of reconstructing volumetric images and localizing tumor positions in 3D in near real-time from a single x-ray image.Comment: 8 pages, 3 figures, submitted to Medical Physics Lette

    Simplified HIV Testing and Treatment in China: Analysis of Mortality Rates Before and After a Structural Intervention.

    Get PDF
    BackgroundMultistage stepwise HIV testing and treatment initiation procedures can result in lost opportunities to provide timely antiretroviral therapy (ART). Incomplete patient engagement along the continuum of HIV care translates into high levels of preventable mortality. We aimed to evaluate the ability of a simplified test and treat structural intervention to reduce mortality.Methods and findingsIn the "pre-intervention 2010" (from January 2010 to December 2010) and "pre-intervention 2011" (from January 2011 to December 2011) phases, patients who screened HIV-positive at health care facilities in Zhongshan and Pubei counties in Guangxi, China, followed the standard-of-care process. In the "post-intervention 2012" (from July 2012 to June 2013) and "post-intervention 2013" (from July 2013 to June 2014) phases, patients who screened HIV-positive at the same facilities were offered a simplified test and treat intervention, i.e., concurrent HIV confirmatory and CD4 testing and immediate initiation of ART, irrespective of CD4 count. Participants were followed for 6-18 mo until the end of their study phase period. Mortality rates in the pre-intervention and post-intervention phases were compared for all HIV cases and for treatment-eligible HIV cases. A total of 1,034 HIV-positive participants (281 and 339 in the two pre-intervention phases respectively, and 215 and 199 in the two post-intervention phases respectively) were enrolled. Following the structural intervention, receipt of baseline CD4 testing within 30 d of HIV confirmation increased from 67%/61% (pre-intervention 2010/pre-intervention 2011) to 98%/97% (post-intervention 2012/post-intervention 2013) (all p < 0.001 [i.e., for all comparisons between a pre- and post-intervention phase]), and the time from HIV confirmation to ART initiation decreased from 53 d (interquartile range [IQR] 27-141)/43 d (IQR 15-113) to 5 d (IQR 2-12)/5 d (IQR 2-13) (all p < 0.001). Initiation of ART increased from 27%/49% to 91%/89% among all cases (all p < 0.001) and from 39%/62% to 94%/90% among individuals with CD4 count ≤ 350 cells/mm3 or AIDS (all p < 0.001). Mortality decreased from 27%/27% to 10%/10% for all cases (all p < 0.001) and from 40%/35% to 13%/13% for cases with CD4 count ≤ 350 cells/mm3 or AIDS (all p < 0.001). The simplified test and treat intervention was significantly associated with decreased mortality rates compared to pre-intervention 2011 (adjusted hazard ratio [aHR] 0.385 [95% CI 0.239-0.620] and 0.380 [95% CI 0.233-0.618] for the two post-intervention phases, respectively, for all newly diagnosed HIV cases [both p < 0.001], and aHR 0.369 [95% CI 0.226-0.603] and 0.361 [95% CI 0.221-0.590] for newly diagnosed treatment-eligible HIV cases [both p < 0.001]). The unit cost of an additional patient receiving ART attributable to the intervention was US83.80.TheunitcostofadeathpreventedbecauseoftheinterventionwasUS83.80. The unit cost of a death prevented because of the intervention was US234.52.ConclusionsOur results demonstrate that the simplified HIV test and treat intervention promoted successful engagement in care and was associated with a 62% reduction in mortality. Our findings support the implementation of integrated HIV testing and immediate access to ART irrespective of CD4 count, in order to optimize the impact of ART

    3D tumor localization through real-time volumetric x-ray imaging for lung cancer radiotherapy

    Full text link
    Recently we have developed an algorithm for reconstructing volumetric images and extracting 3D tumor motion information from a single x-ray projection. We have demonstrated its feasibility using a digital respiratory phantom with regular breathing patterns. In this work, we present a detailed description and a comprehensive evaluation of the improved algorithm. The algorithm was improved by incorporating respiratory motion prediction. The accuracy and efficiency were then evaluated on 1) a digital respiratory phantom, 2) a physical respiratory phantom, and 3) five lung cancer patients. These evaluation cases include both regular and irregular breathing patterns that are different from the training dataset. For the digital respiratory phantom with regular and irregular breathing, the average 3D tumor localization error is less than 1 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for 3D tumor localization from each projection ranges between 0.19 and 0.26 seconds, for both regular and irregular breathing, which is about a 10% improvement over previously reported results. For the physical respiratory phantom, an average tumor localization error below 1 mm was achieved with an average computation time of 0.13 and 0.16 seconds on the same GPU card, for regular and irregular breathing, respectively. For the five lung cancer patients, the average tumor localization error is below 2 mm in both the axial and tangential directions. The average computation time on the same GPU card ranges between 0.26 and 0.34 seconds

    Refractory wheezing in Chinese children under 3 years of age: bronchial inflammation and airway malformation

    Get PDF
    BACKGROUND: Wheezing is a common symptom in early childhood. However, refractory wheezing is difficult to treat, and it may thus account for extensive use of medical resources. It is therefore important to improve our understanding of the pathophysiology of refractory childhood wheezing. METHODS: In this descriptive study, we studied 156 children with refractory wheezing using fiberoptic bronchoscopy and bronchoalveolar lavage (BAL), and compared the results with a control group of 46 children with various pulmonary diseases but no wheezing. Etiology and cell classification were analyzed for each BAL sample. RESULTS: Overall, 21.8 % of children with refractory wheezing had airway malformations including tracheomalacia, airway stenosis, and tracheal bronchus. The incidence of airway malformations increased to 31 % in infants under 12 months of age. A significant increase in neutrophil ratio and decrease in macrophage ratio were observed in BAL from children with refractory wheezing compared with controls. Pathogen infection led to a higher ratio of neutrophils in the wheezing group compared with controls. However, there were no significant differences in neutrophil ratios among children with various pathogen infections. Furthermore, children with refractory wheezing had a high rate of Mycoplasma pneumoniae infection. CONCLUSIONS: Airway malformations might play an important role in children under 3 years of age with refractory wheezing, especially in infants under 12 months of age. Neutrophil-mediated airway inflammation was characteristic of refractory wheezing in children under 3 years of age. In addition, infections such as M. pneumoniae may aggravate airway inflammation and affect refractory wheezing

    Testing and Evaluation of Multifunctional Smart Coatings

    Get PDF
    A smart coating system, based on pH sensitive microcontainers (microparticles and microcapsules) has been developed. Various corrosion inhibitors have been encapsulated and incorporated into commercial and formulated coatings to test the functionality imparted on the coating by the incorporation of the inhibitor microcontainers. Coated carbon steel and aluminum alloy panels were tested using salt immersion, salt fog, and coastal atmospheric exposure conditions. This paper provides the details on coating sample preparation, evaluation methods, as well as test results of the inhibiting function of smart coatings

    A multiyear assessment of air quality benefits from China’s emerging shale gas revolution: Urumqi as a case study

    Get PDF
    China is seeking to unlock its shale gas in order to curb its notorious urban air pollution, but robust assessment of the impact on PM2.5 pollution of replacing coal with natural gas for winter heating is lacking. Here, using a whole-city heating energy shift opportunity offered by substantial reductions in coal combustion during the heating periods in Urumqi, northwest China, we conducted a four-year study to reveal the impact of replacing coal with natural gas on the mass concentrations and chemical components of PM2.5. We found a significant decline in PM2.5, major soluble ions and metal elements in PM2.5 in January of 2013 and 2014 compared with the same periods in 2012 and 2011, reflecting the positive effects on air quality of using natural gas as a heating fuel throughout the city. This occurred following complete replacement with natural gas for heating energy in October 2012. The weather conditions during winter did not show any significant variation over the four years of the study. Our results indicate that China and other developing nations will benefit greatly from a change in energy source, that is, increasing the contribution of either natural gas or shale gas to total energy consumption with a concomitant reduction in coal consumption

    A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    Full text link
    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite size pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework [Gu et al. Phys. Med. Biol. 54 6287-97, 2009]. Dosimetric evaluations against Monte Carlo dose calculations are conducted on 10 IMRT treatment plans (5 head-and-neck cases and 5 lung cases). For all cases, there is improvement with the 3D-density correction over the conventional FSPB algorithm and for most cases the improvement is significant. Regarding the efficiency, because of the appropriate arrangement of memory access and the usage of GPU intrinsic functions, the dose calculation for an IMRT plan can be accomplished well within 1 second (except for one case) with this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB algorithm without 3D-density correction, this new algorithm, though slightly sacrificing the computational efficiency (~5-15% lower), has significantly improved the dose calculation accuracy, making it more suitable for online IMRT replanning

    Rnd3/RhoE Modulates HIF1α/VEGF Signaling by Stabilizing HIF1α and Regulates Responsive Cardiac Angiogenesis

    Get PDF
    The insufficiency of compensatory angiogenesis in the heart of patients with hypertension contributes to heart failure transition. The hypoxia-inducible factor 1α-vascular endothelial growth factor (HIF1α-VEGF) signaling cascade controls responsive angiogenesis. One of the challenges in reprograming the insufficient angiogenesis is to achieve a sustainable tissue exposure to the proangiogenic factors, such as HIF1α stabilization. In this study, we identified Rnd3, a small Rho GTPase, as a proangiogenic factor participating in the regulation of the HIF1α-VEGF signaling cascade. Rnd3 physically interacted with and stabilized HIF1α, and consequently promoted VEGFA expression and endothelial cell tube formation. To demonstrate this proangiogenic role of Rnd3 in vivo, we generated Rnd3 knockout mice. Rnd3 haploinsufficient (Rnd3(+/-)) mice were viable, yet developed dilated cardiomyopathy with heart failure after transverse aortic constriction stress. The poststress Rnd3(+/-) hearts showed significantly impaired angiogenesis and decreased HIF1α and VEGFA expression. The angiogenesis defect and heart failure phenotype were partially rescued by cobalt chloride treatment, a HIF1α stabilizer, confirming a critical role of Rnd3 in stress-responsive angiogenesis. Furthermore, we generated Rnd3 transgenic mice and demonstrated that Rnd3 overexpression in heart had a cardioprotective effect through reserved cardiac function and preserved responsive angiogenesis after pressure overload. Finally, we assessed the expression levels of Rnd3 in the human heart and detected significant downregulation of Rnd3 in patients with end-stage heart failure. We concluded that Rnd3 acted as a novel proangiogenic factor involved in cardiac responsive angiogenesis through HIF1α-VEGFA signaling promotion. Rnd3 downregulation observed in patients with heart failure may explain the insufficient compensatory angiogenesis involved in the transition to heart failure
    corecore