1,108 research outputs found

    Homologous haplotypes, expression, genetic effects and geographic distribution of the wheat yield gene TaGW2

    Get PDF
    BACKGROUND: TaGW2-6A, cloned in earlier research, strongly influences wheat grain width and TKW. Here, we mainly analyzed haplotypes of TaGW2-6B and their effects on TKW and interaction with haplotypes at TaGW2-6A. RESULTS: About 2.9 kb of the promoter sequences of TaGW2-6B and TaGW2-6D were cloned in 34 bread wheat cultivars. Eleven SNPs were detected in the promoter region of TaGW2-6B, forming 4 haplotypes, but no divergence was detected in the TaGW2-6D promoter or coding region. Three molecular markers including CAPS, dCAPS and ACAS, were developed to distinguish the TaGW2-6B haplotypes. Haplotype association analysis indicated that TaGW2-6B has a stronger influence than TaGW2-6A on TKW, and Hap-6B-1 was a favored haplotype increasing grain width and weight that had undergone strong positive selection in global wheat breeding. However, clear geographic distribution differences for TaGW2-6A haplotypes were found; Hap-6A-A was favored in Chinese, Australian and Russian cultivars, whereas Hap-6A-G was preferred in European, American and CIMMYT cultivars. This difference might be caused by a flowering and maturity time difference between the two haplotypes. Hap-6A-A is the earlier type. Haplotype interaction analysis between TaGW2-6A and TaGW2-6B showed additive effects between the favored haplotypes. Hap-6A-A/Hap-6B-1 was the best combination to increase TKW. Relative expression analysis of the three TaGW2 homoeologous genes in 22 cultivars revealed that TaGW2-6A underwent the highest expression. TaGW2-6D was the least expressed during grain development and TaGW2-6B was intermediate. Diversity of the three genes was negatively correlated with their effect on TKW. CONCLUSIONS: Genetic effects, expression patterns and historic changes of haplotypes at three homoeologous genes of TaGW2 influencing yield were dissected in wheat cultivars. Strong and constant selection to favored haplotypes has been found in global wheat breeding during the past century. This research also provides a valuable case for understanding interaction of genes that control complex traits in polyploid species

    Effectiveness of moxibustion treatment as adjunctive therapy in osteoarthritis of the knee: a randomized, double-blinded, placebo-controlled clinical trial

    Get PDF
    INTRODUCTION: Our objective was to compare the effectiveness and safety of traditional Chinese moxibustion to that of sham moxibustion in patients with chronic knee osteoarthritis (KOA) pain. METHODS: We conducted a randomized placebo-controlled trial involving 110 patients with KOA who met the inclusion criteria. These patients randomly received either active moxibustion (n = 55) or sham moxibustion control (n = 55) at acupoints Dubi (ST 35), extra-point Neixiyan (EX-LE 4), and an Ashi (tender) point three times a week for 6 weeks. Effects were evaluated with Western Ontario and McMaster Universities’ Osteoarthritis Index (WOMAC VA 3.1) criteria at the end of the course of treatment and 3, 12, and 24 weeks after the initial treatment. RESULTS: The WOMAC pain scores showed greater improvement in the active treatment group than in control at weeks 3 (P = 0.012), 6 (P <0.001), 12 (P = 0.002), and 24 (P = 0.002) as did WOMAC physical function scores of the active treatment group at week 3 (P = 0.002), 6 (P = 0.015), and 12 (P <0.001) but not 24 (P = 0.058). Patients and practitioners were blinded successfully, and no significant adverse effects were found during the trial. CONCLUSIONS: A 6-week course of moxibustion seems to relieve pain effectively and improve function in patients with KOA for up to 18 weeks after the end of treatment. Moxibustion treatment appears to be safe, and the usefulness of the novel moxa device was validated. TRIAL REGISTRATION: Current controlled trial: ISRCTN68475405. Registered 4 April 2014

    Dynamic analysis of a fractional-order SIRS model with time delay

    Get PDF
    Mathematical modeling plays a vital role in the epidemiology of infectious diseases. Policy makers can provide the effective interventions by the relevant results of the epidemic models. In this paper, we build a fractional-order SIRS epidemic model with time delay and logistic growth, and we discuss the dynamical behavior of the model, such as the local stability of the equilibria and the existence of Hopf bifurcation around the endemic equilibrium. We present the numerical simulations to verify the theoretical analysis

    Muscle Nicotinic Acetylcholine Receptors May Mediate Trans-Synaptic Signaling at the Mouse Neuromuscular Junction

    Get PDF
    Block of neurotransmitter receptors at the neuromuscular junction (NMJ) has been shown to trigger upregulation of the number of synaptic vesicles released (quantal content, QC), a response termed homeostatic synaptic plasticity. The mechanism underlying this plasticity is not known. Here, we used selective toxins to demonstrate that block of α1-containing nicotinic acetylcholine receptors (nAChRs) at the NMJ of male and female mice triggers the upregulation of QC. Reduction of current flow through nAChRs, induced by drugs with antagonist activity, demonstrated that reduction in synaptic current per se does not trigger upregulation of QC. These data led to the remarkable conclusion that disruption of synaptic transmission is not sensed to trigger upregulation of QC. During studies of the effect of partial block of nAChRs on QC, we observed a small but reproducible increase in the decay kinetics of miniature synaptic currents. The change in kinetics was correlated with the increase in QC and raises the possibility that a change in postsynaptic nAChR conformation may be associated with the presynaptic increase in QC. We propose that, in addition to functioning in synaptic transmission, ionotropic muscle nicotonic nAChRs may serve as signaling molecules that participate in synaptic plasticity. Because nAChRs have been implicated in a number of disease states, the finding that nAChRs may be involved in triggering synaptic plasticity could have wide-reaching implications. SIGNIFICANCE STATEMENT The signals that initiate synaptic plasticity of the nervous system are still incompletely understood. Using the mouse neuromuscular junction as a model synapse, we studied how block of neurotransmitter receptors is sensed to trigger synaptic plasticity. Our studies led to the surprising conclusion that neither changes in synaptic current nor spiking of the presynaptic or postsynaptic cell are sensed to initiate synaptic plasticity. Instead, postsynaptic nicotinic acetylcholine receptors (nAChRs), in addition to functioning in synaptic transmission, may serve as signaling molecules that trigger synaptic plasticity. Because nAChRs have been implicated in a number of disease states, the finding that they may mediate synaptic plasticity has broad implications

    MCGCL: A multi-contextual graph contrastive learning-based approach for POI recommendation

    Get PDF
    This paper focused on the point-of-interest (POI) recommendation task. Recently, graph representation learning-based POI recommendation models have gained significant attention due to the powerful modeling capacity of graph structural data. Despite their effectiveness, we have found that recent methods struggle to effectively utilize information from POIs that have not been checked in, which could limit their performance. Hence, in this paper, we proposed a new model, named the multi-contextual graph contrastive learning (MCGCL) model, which introduces the contrastive learning into graph representation learning-based methods. First, MCGCL extracts interactions between POIs under different contextual factors from user check-in records using predefined graph structure information. Next, it samples important POI sets from different contextual factors using a random walk-based method. Then, it introduces a new contrastive learning loss that incorporates contextual information into traditional contrastive learning to enhance its ability to capture contextual information. Finally, MCGCL employs a graph neural network (GNN) model to learn representations of users and POIs. Extensive experiments on real-world datasets have demonstrated the effectiveness of MCGCL on the POI recommendation task compared to representative POI recommendation approaches

    Gibberellins-independent stem length regulation by YABBY1 in cucurbit crops

    Get PDF
    The enhanced translation of YABBY1 transcription factor could suppress stem elongation in a dose-dependent manner in cucurbit crops, however, the genome editing mutant of YABBY1 was insensitive to exogenous gibberellins (GAs) treatment. To further explore the potential interaction of gibberellins signaling and CmoYABBY1, we investigated the gibberellins content and gene expression levels of gibberellins pathway between the bushy pumpkin CmoM-4 and WT. The results suggested that CmoYABBY1 locates downstream of the GAs pathway, and the increased translation level of CmoYABBY1 in CmoM-4 may disturb the downstream signaling of gibberellins in a yet unknown regulatory mechanism

    Identification of protein complexes from multi-relationship protein interaction networks

    Get PDF
    BACKGROUND: Protein complexes play an important role in biological processes. Recent developments in experiments have resulted in the publication of many high-quality, large-scale protein-protein interaction (PPI) datasets, which provide abundant data for computational approaches to the prediction of protein complexes. However, the precision of protein complex prediction still needs to be improved due to the incompletion and noise in PPI networks. RESULTS: There exist complex and diverse relationships among proteins after integrating multiple sources of biological information. Considering that the influences of different types of interactions are not the same weight for protein complex prediction, we construct a multi-relationship protein interaction network (MPIN) by integrating PPI network topology with gene ontology annotation information. Then, we design a novel algorithm named MINE (identifying protein complexes based on Multi-relationship protein Interaction NEtwork) to predict protein complexes with high cohesion and low coupling from MPIN. CONCLUSIONS: The experiments on yeast data show that MINE outperforms the current methods in terms of both accuracy and statistical significance

    Release Profile of Nitrogen during Thermal Treatment of Waste Wooden Packaging Materials

    Get PDF
    In this paper, the fast pyrolysis experiment of particle board was carried out on a fixed bed reactor and a Py-GC/MS equipment. The effects of temperature and gas phase residence time on the product yields and its components distribution were investigated. The effect of components of particle board on product yields and its components distribution was also investigated. The results showed that the temperature has a great influence on the yields of fast pyrolysis products, and the yield of pyrolysis oil reached the highest at 550°C. The urea-formaldehyde resin would prevent the pyrolysis of particle board. Compared with the bio-oil from fast pyrolysis of wood, the major components of the bio-oil from fast pyrolysis of particle board did not change much
    corecore