238 research outputs found

    AIDing Contraception: HIV and Recent Trends in Abortion Rates

    Get PDF
    Since the onset of HIV/AIDS awareness in the early 1980s, much attention has centered around the substantial negative effects of the disease throughout the world. This paper provides evidence of a secondary effect the disease has had on sexual behavior in the United States. Using a difference-in-differences estimation framework and state level data, we show that the perceived threat of HIV resulted in a drop in unwanted pregnancies, as demonstrated by a lower incidence of abortions. Our results suggest that each additional reported case of HIV per 1,000 individuals resulted in 85.5 fewer abortions per 1,000 live births.

    Security communication and energy efficiency optimization strategy in UAV-aided edge computing

    Get PDF
    The flexible mobility of the unmanned aerial vehicle (UAV) has attracted widespread attention in the mobile edge computing (MEC) system.However, the existence of eavesdroppers in the air makes it a huge challenge for its secure transmission.In order to solve the contradiction between high safe communication rate and low energy consumption, the concept of security communication energy efficiency was introduced, that was, the ratio between UAV safe communication transmission rate and UAV energy consumption.Firstly, to subject the task delay constraint, limited UAV CPU frequency and task offloading rate constraint, an offloading strategy was proposed to maximize the energy efficiency of secure communication by jointly optimizing the legal UAV hover location, CPU frequency allocation and distinguishing the complexity of computing tasks, while improving the security communication in the UAV-MEC scenario from the perspective of physical layer security.Secondly, to address the non-convex optimization problem, it was decomposed into three sub-problems that were solved with block coordinate descent and the successive convex approximation (SCA) methods respectively.The simulation results show that, with different task complexity, the proposed strategy can balance the relationship between the overall secure communication performance and energy consumption, while meeting the offloading requirements of ground terminals.And then it improves secrecy energy efficiency

    CqNLP1 promotes Chenopodium quinoa Willd. seed germination regulated by NO 3 -

    Get PDF
    ABSTRACT: Quinoa (Chenopodium quinoa) has earned special attention worldwide due to its higher nutritional value and its adaptive ability to contrasting environments. Here, it was explored how quinoa seed germination is regulated. CqNLP1 gene was identified and cloned due to its higher expression level in quinoa seeds. The role of CqNLP1 in seed germination was studied based on model species as Arabidopsis sp. The function of NO3 - during seed germination of quinoa was analyzed. The results showed CqNLP1 gene can restore the germination rate of Arabidopsis mutant nlp8-1 and nlp8-2 strains, suggesting that CqNLP1 gene plays an important role in promoting seed germination. Appropriate level of NO3 - could improve the germination rate of quinoa seeds, promote the decomposition and utilization of soluble protein and ABA, increase the expression level of CqNLP1 and CYP707A2 during germination. The optimal NO3 - concentration to promote seed germination is 1mM

    RIS assisted energy efficiency optimization mechanism in UAV edge computing system supporting wireless energy supply

    Get PDF
    During the process of offloading tasks from devices to the UAVs, tall buildings can cause issues such as signal attenuation, multipath propagation, and signal blockage, thereby impacting the task offloading rate of devices. To address this challenge, the RIS was introduced to improve channel quality and enhance task offloading rates. It is worth noting that RIS operates without its own energy source and user energy resources are limited. To overcome this energy constraint, UAV employing RF signal-based energy transmission beams to recharge both devices and RIS was proposed. Secondly, an energy-efficient optimization strategy for RIS-enhanced wireless powered MEC network was proposed by jointly optimizing downlink and uplink phase beamforming, UAV trajectories, and task offloading rates. Building upon this foundation, a block coordinate descent (BCD) algorithm that combines semi-definite relaxation (SDR) and successive convex approximation (SCA) techniques was introduced. The extensive simulation results validate the effectiveness of the proposed optimization strategy in achieving a great balance between energy supply and task offloading energy consumption while meeting the task offloading requirements of ground terminals, thus enhancing the overall energy efficiency of the network

    Development characteristics and main controlling factors of Carboniferous volcanic reservoirs in the Shixi area, Junggar Basin

    Get PDF
    The Carboniferous volcanic reservoirs in the Shixi area of the Junggar Basin are complex and diverse. Identifying the characteristics and main factors controlling high-quality volcanic reservoirs is the key to increasing oil and gas reserves and production in this area. Through core observations, thin section identification, physical property and pore structure analyses, combined with production data, the main controlling factors and development modes of high-quality reservoirs were analysed. The results show that the Carboniferous strata in the Shixi area mainly contain andesite and dacite of overflow facies, followed by volcanic breccia and tuff of explosive facies. Volcanic reservoirs in the study area are high-porosity–low-permeability and medium-porosity–low-permeability reservoirs. Volcanic breccia of explosive facies has the best physical properties, showing the characteristics of high porosity and medium permeability. The reservoir space is mainly composed of gas cavities, corrosion pores and fractures, among which the corrosion pores are the most important reservoir spaces of the Carboniferous volcanic rocks. Lithology and lithofacies, weathering and corrosion, and fractures are the main factors controlling the development of high-quality volcanic reservoirs. Volcanic rocks that had experienced weathering and denudation for a long time developed a large number of secondary corrosion pores due to the corrosion of soluble minerals or volcanic ash. Fractures further improved the physical properties, causing volcanic rocks to eventually develop into weathering crust reservoirs. The physical properties of the volcanic rocks far away from the weathering crust were improved through primary gas cavities and structural fractures, and these volcanic rocks eventually developed into the inner reservoir

    The Q226L mutation can convert a highly pathogenic H5 2.3.4.4e virus to bind human-type receptors

    Get PDF
    H5Nx viruses continue to wreak havoc in avian and mammalian species worldwide. The virus distinguishes itself by the ability to replicate to high titers and transmit efficiently in a wide variety of hosts in diverse climatic environments. Fortunately, transmission to and between humans is scarce. Yet, if such an event were to occur, it could spark a pandemic as humans are immunologically naïve to H5 viruses. A significant determinant of transmission to and between humans is the ability of the influenza A virus hemagglutinin (HA) protein to shift from an avian-type to a human-type receptor specificity. Here, we demonstrate that a 2016 2.3.4.4e virus HA can convert to human-type receptor binding via a single Q226L mutation, in contrast to a cleavage-modified 2016 2.3.4.4b virus HA. Using glycan arrays, X-ray structural analyses, tissue- and direct glycan binding, we show that L133a Δ and 227Q are vital for this phenotype. Thus, whereas the 2.3.4.4e virus HA only needs a single amino acid mutation, the modified 2016 2.3.4.4b HA was not easily converted to human-type receptor specificity.</p

    A multifunctional human monoclonal neutralizing antibody that targets a unique conserved epitope on influenza HA

    Get PDF
    The high rate of antigenic drift in seasonal influenza viruses necessitates frequent changes in vaccine composition. Recent seasonal H3 vaccines do not protect against swine-origin H3N2 variant (H3N2v) strains that recently have caused severe human infections. Here, we report a human VH1-69 gene-encoded monoclonal antibody (mAb) designated H3v-47 that exhibits potent cross-reactive neutralization activity against human and swine H3N2 viruses that circulated since 1989. The crystal structure and electron microscopy reconstruction of H3v-47 Fab with the H3N2v hemagglutinin (HA) identify a unique epitope spanning the vestigial esterase and receptor-binding subdomains that is distinct from that of any known neutralizing antibody for influenza A H3 viruses. MAb H3v-47 functions largely by blocking viral egress from infected cells. Interestingly, H3v-47 also engages Fcγ receptor and mediates antibody dependent cellular cytotoxicity (ADCC). This newly identified conserved epitope can be used in design of novel immunogens for development of broadly protective H3 vaccines

    Fabrication of Nickel Nanostructure Arrays Via a Modified Nanosphere Lithography

    Get PDF
    In this paper, we present a modified nanosphere lithographic scheme that is based on the self-assembly and electroforming techniques. The scheme was demonstrated to fabricate a nickel template of ordered nanobowl arrays together with a nickel nanostructure array-patterned glass substrate. The hemispherical nanobowls exhibit uniform sizes and smooth interior surfaces, and the shallow nanobowls with a flat bottom on the glass substrate are interconnected as a net structure with uniform thickness. A multiphysics model based on the level set method (LSM) was built up to understand this fabricating process by tracking the interface between the growing nickel and the electrolyte. The fabricated nickel nanobowl template can be used as a mold of long lifetime in soft lithography due to the high strength of nickel. The nanostructure–patterned glass substrate can be used in optical and magnetic devices due to their shape effects. This fabrication scheme can also be extended to a wide range of metals and alloys

    Genetic Diversity and Linkage Disequilibrium in Chinese Bread Wheat (Triticum aestivum L.) Revealed by SSR Markers

    Get PDF
    Two hundred and fifty bread wheat lines, mainly Chinese mini core accessions, were assayed for polymorphism and linkage disequilibrium (LD) based on 512 whole-genome microsatellite loci representing a mean marker density of 5.1 cM. A total of 6,724 alleles ranging from 1 to 49 per locus were identified in all collections. The mean PIC value was 0.650, ranging from 0 to 0.965. Population structure and principal coordinate analysis revealed that landraces and modern varieties were two relatively independent genetic sub-groups. Landraces had a higher allelic diversity than modern varieties with respect to both genomes and chromosomes in terms of total number of alleles and allelic richness. 3,833 (57.0%) and 2,788 (41.5%) rare alleles with frequencies of <5% were found in the landrace and modern variety gene pools, respectively, indicating greater numbers of rare variants, or likely new alleles, in landraces. Analysis of molecular variance (AMOVA) showed that A genome had the largest genetic differentiation and D genome the lowest. In contrast to genetic diversity, modern varieties displayed a wider average LD decay across the whole genome for locus pairs with r2>0.05 (P<0.001) than the landraces. Mean LD decay distance for the landraces at the whole genome level was <5 cM, while a higher LD decay distance of 5–10 cM in modern varieties. LD decay distances were also somewhat different for each of the 21 chromosomes, being higher for most of the chromosomes in modern varieties (<5∼25 cM) compared to landraces (<5∼15 cM), presumably indicating the influences of domestication and breeding. This study facilitates predicting the marker density required to effectively associate genotypes with traits in Chinese wheat genetic resources
    corecore