638 research outputs found
Conservation and diversification of the miR166 family in soybean and potential roles of newly identified miR166s
Identity between pre-miR166s in soybean. (TIF 5906 kb
Inhibition of miR-665 alleviates neuropathic pain by targeting SOCS1
Purpose: To investigate the effect of miR-665 in neuropathic pain and the possible molecular mechanism involved.Methods: A neuropathic pain model was established using chronic constriction injury (CCI) methods in Sprague Dawley (SD) rats. Mechanical and thermal hyperalgesia were measured using paw withdrawal threshold (PWT) and paw withdrawal latency (PWL), respectively. The inflammation response was determined by assessing the production of inflammation factors. The target relationship of miR-665 and suppressor of cytokine signaling 1 (SOCS1) was verified by luciferase assay.Results: In the CCI rat model, PWT and PWL decreased following treatment with miR-665 (p < 0.01). MiR-665 was elevated in the spinal cord and microglia of CCI rats at different time points (p < 0.01). Down-regulation of miR-665 increased PWT and PWL and inhibited the production of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in CCI rats (p < 0.01). Luciferase assay results indicate that SOCS1 was the target of miR-665 (p < 0.01). SOCS1 decreased in CCI rats (p < 0.01) after treatment with miR-665. MiR-665 negatively regulated the expression of SOCS1 (p < 0.01). Down-regulation of SOCS1 reversed the alleviating effect of decreased miR-665 on pain sensitivity and inflammationresponse (p < 0.01).Conclusion: Down-regulation of miR-665 alleviates neuropathic pain by targeting SOCS1, and hence making miR-665 a promising therapeutic target for neuropathic pain.
Keywords: MiR-665, SOCS1, Neuropathic pain, CCI, Spinal cor
Melatonin reverses type 2 diabetes-induced cognitive deficits via attenuation of oxidative/nitrosative stress and NF-κB-mediated neuroinflammation in rat hippocampus
Purpose: To evaluate the protective effect of melatonin on diabetes-induced cognitive dysfunction. Methods: Rats were fed a high-fat diet + streptozotocin (HFD + STZ) for 15 weeks to induce type 2 diabetes (HFD + STZ group). At the end of the 15-week induction of diabetes, cognitive function in the diabetic rats was estimated using a Morris water maze and an object recognition task. Next, the diabetic rats were treated with melatonin (10 mg/ kg, po) for 3 weeks. Thereafter, cognitive function was reevaluated in the melatonin-treated diabetic rats (melatonin group). Results: There was a significant (p < 0.01) decrease in the serum glucose and insulin in melatonintreated diabetes type 2 rats compared with that of diabetes type 2 rats exposed to only HFD + STZ. Treatment with melatonin (10 mg/kg, po) for 3 weeks in diabetic type 2 rats also caused a significant increase (p < 0.01) in the time spent in the target quadrant and preference index in diabetic rats compared with the HFD + STZ group. There were significant decreases in reactive oxygen species (ROS), oxido-nitrosative stress markers, including thiobarbituric acid reactive substances (TBARS), nitrite, and depleted glutathione (GSH) level in the hippocampus of melatonin-treated group, compared with the HFD + STZ-treated group. Moreover, the melatonin-treated group showed significant inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and reduction in the levels of proinflammatory cytokines. Conclusion: The results demonstrate that melatonin prevents cognitive dysfunction in type 2 diabetic rats by attenuating oxido-nitrosative stress and NF-κB-mediated neuroinflammation. This effect suggests that melatonin may be useful for the management of cognitive dysfunction in patients suffering from diabetes. Keywords: Cognitive dysfunction, Melatonin, Neuroinflammation, Nuclear factor kappa-light-chainenhancer of activated B cells (NF-κB), Oxido-nitrosative stress, Type 2 diabete
Precise Measurements of Branching Fractions for Meson Decays to Two Pseudoscalar Mesons
We measure the branching fractions for seven two-body decays to
pseudo-scalar mesons, by analyzing data collected at
GeV with the BESIII detector at the BEPCII collider. The branching fractions
are determined to be ,
,
,
,
,
,
,
where the first uncertainties are statistical, the second are systematic, and
the third are from external input branching fraction of the normalization mode
. Precision of our measurements is significantly improved
compared with that of the current world average values
The Protective Effect of Yi Shen Juan Bi Pill in Arthritic Rats with Castration-Induced Kidney Deficiency
Androgens have been linked to the onset, severity, and progression of rheumatoid arthritis (RA). In traditional Chinese medicine (TCM), the most common pattern in RA is kidney deficiency, which partly corresponds to a low sex hormone state. In this study, TCM kidney deficiency was induced in male Sprague-Dawley rats with castration surgery, and a TCM preparation, Yi Shen Juan Bi Pill (YJB), was used to treat collagen induced arthritis (CIA) rats with castration. Metabolomic technique was used to evaluate the pharmacological mechanism in castrated CIA rats treated by YJB. The results showed that castration significantly increased the severity of the arthritis in rats but was ameliorated by YJB. Its pharmacological mechanism was partially associated with lipid metabolites involving free fatty acid (FFA) and lysophosphatidylcholine (LPC). In conclusion, the experimental results demonstrate the protective effect of YJB on the TCM kidney deficiency pattern induced by androgen deficiency in CIA rats and support that YJB should be used for the clinical treatment of RA with TCM kidney deficiency pattern
Effects of Fe on microstructures and mechanical properties of Ti-15Nb-25Zr-(0, 2, 4, 8)Fe alloys prepared by spark plasma sintering
Biomedical Ti-15Nb-25Zr-(0, 2, 4, 8)Fe (mol%) alloys are prepared by mixing pure element powders and spark plasma sintering (SPS). Specimens with diameters of 20 mm and thicknesses of 3 mm are obtained by sintering at 1000°C for 10 min followed by cooling in the furnace. Some of the specimens are then heat-treated at 900°C for 1 h followed by water quenching. Zr and Fe are dissolved in Ti; however, segregation of Nb is observed in all of the alloys. The β and α′′ phases are observed in the as-sintered and heat-treated specimens owing to the insufficient diffusion of the alloying elements. Fe stabilizes the β phase and provides a solution-strengthening effect. With the increase in the Fe content in the as-sintered specimen, the compressive strength and micro-Vickers hardness are improved in the Ti-15-Nb-25Zr-(0, 2, 4)Fe alloys and slightly decreased in Ti-15-Nb-25Zr-8Fe. The as-sintered Ti-15Nb-25Zr-4Fe alloy exhibits the maximum compressive strength of 1740 MPa. Although the plasticity is decreased by the Fe addition, a fracture strain of approximately 17% is obtained for Ti-15Nb-25Zr-4Fe, indicating a good plasticity. The heat treatment cannot eliminate the segregation of Nb, but can improve the plasticity and slightly increase the strengths of Ti-15Nb-25-Zr(0, 2, 4)Fe. Moreover, the heat-treated Ti-15Nb-25Zr-8Fe exhibits a high strength of approximately 1780 MPa and fracture strain of approximately 19%. Therefore, good comprehensive mechanical properties, including high strengths, high hardnesses, and good plasticities, can be obtained in Fe-added β-Ti alloys prepared by SPS and subsequent optional short heat treatment.Li Q., Yuan X., Li J., et al. Effects of Fe on microstructures and mechanical properties of Ti-15Nb-25Zr-(0, 2, 4, 8)Fe alloys prepared by spark plasma sintering. Materials Transactions 60, 1763 (2019); https://doi.org/10.2320/matertrans.ME201913
The application of nanomedicine in clinical settings
As nanotechnology develops in the fields of mechanical engineering, electrical engineering, information and communication, and medical care, it has shown great promises. In recent years, medical nanorobots have made significant progress in terms of the selection of materials, fabrication methods, driving force sources, and clinical applications, such as nanomedicine. It involves bypassing biological tissues and delivering drugs directly to lesions and target cells using nanorobots, thus increasing concentration. It has also proved useful for monitoring disease progression, complementary diagnosis, and minimally invasive surgery. Also, we examine the development of nanomedicine and its applications in medicine, focusing on the use of nanomedicine in the treatment of various major diseases, including how they are generalized and how they are modified. The purpose of this review is to provide a summary and discussion of current research for the future development in nanomedicine
The Colonization of Synthetic Microbial Communities Carried by Bio-Organic Fertilizers in Continuous Cropping Soil for Potato Plants
Synthetic microbial communities (SynComs) play significant roles in soil health and sustainable agriculture. In this study, bacterial SynComs (SCBs) and fungal SynComs (SCFs) were constructed by selecting microbial species that could degrade the potato root exudates associated with continuous cropping obstacles. SCBs, SCFs, and SCB + SCF combinations were then inoculated into organic fertilizers (OFs, made from sheep manure) to produce three bio-organic fertilizers (BOFs), denoted by SBFs (BOFs of inoculated SCBs), SFFs (BOFs of inoculated SCFs), and SBFFs (BOFs of inoculated SCB + SCF combinations), respectively. The OF and three BOFs, with a chemical fertilizer (CK) as the control, were then used in pot experiments involving potato growth with soil from a 4-year continuous cropping field. Microbial diversity sequencing was used to investigate the colonization of SCBs and SCFs into the rhizosphere soil and the bulk soil, and their effects on soil microbial diversity were evaluated. Source Tracker analysis showed that SCBs increased bacterial colonization from the SBFs into the rhizosphere soil, but at a relatively low level of 1% of the total soil bacteria, while SCFs increased fungi colonization from the SFF into the bulk soil at a much higher level of 5–18% of the total soil fungi. In combination, SCB + SCF significantly increased fungi colonization from the SBFF into both the bulk soil and the rhizosphere soil. Overall, the soil fungi were more susceptible to the influence of the BOFs than the bacteria. In general, the application of BOFs did not significantly change the soil microbial alpha diversity. Correlation network analysis showed that key species of bacteria were stable in the soils of the different groups, especially in the rhizosphere soil, while the key species of fungi significantly changed among the different groups. LEfSe analysis showed that the application of BOFs activated some rare species, which were correlated with improvements in the function categories of the tolerance of stress, nitrogen fixation, and saprotroph functions. Mantel test analysis showed that the BOFs significantly affected soil physicochemical properties, influencing bacterial key species, and core bacteria, promoting potato growth. It was also noted that the presence of SynCom-inoculated BOFs may lead to a slight increase in plant pathogens, which needs to be considered in the optimization of SynCom applications to overcome continuous cropping obstacles in potato production.This article is published as Zhang, Wenming, Shiqing Li, Pingliang Zhang, Xuyan Han, Yanhong Xing, and Chenxu Yu. "The Colonization of Synthetic Microbial Communities Carried by Bio-Organic Fertilizers in Continuous Cropping Soil for Potato Plants." Microorganisms 12, no. 11 (2024): 2371. doi: https://doi.org/10.3390/microorganisms12112371
The impact of horizontal violence among nurses on their job burnout: a moderated mediation model
ObjectiveChinese nurses have a heavy workload, and the problem of inter nurse horizontal violence is prominent. Nurses who are subjected to horizontal violence are more likely to experience professional burnout. The aim of this study is to explore the intrinsic relationship between inter nurse horizontal violence and nurse burnout, and to examine the mediating role of psychological detachment in this relationship. In addition, this study also evaluated whether professional mission has a moderating effect in this mediating model.MethodsFrom November to December 2024, this study employed a cross-sectional survey method to recruit nurses from five tertiary first-class public hospitals in the southwest region of Sichuan Province. Surveys were conducted using general information questionnaires, lateral violence among nurses questionnaires, job burnout scales, psychological detachment scales, and professional mission scales. Data obtained from the survey were analyzed using SPSS 27.0 and its macro program Process v4.2.ResultsResearch indicates that inter-nurse horizontal violence is a significant predictor of job burnout, with a positive correlation between the two. Psychological detachment has been identified as playing a partial mediating role in the association between inter-nurse horizontal violence and job burnout, with the mediating effect accounting for 44.73% of the total effect. Furthermore, a sense of professional mission weakens the negative prediction of horizontal violence on psychological detachment and the positive prediction of horizontal violence on job burnout, and moderates the first half of the mediating effect model as well as the direct effect.ConclusionNurses’ psychological detachment ability plays a partial mediating role in horizontal violence and job burnout, with a sense of professional mission moderating this mediation model. Nurses with a strong sense of professional mission are more likely to overcome the distress caused by horizontal violence, enabling them to have a higher degree of psychological detachment, recover during rest, and thus reduce job burnout. Conversely, nurses with a weak sense of professional mission are more prone to experiencing job burnout when subjected to horizontal violence. Therefore, enhancing nurses’ sense of professional mission and psychological detachment ability is beneficial for alleviating job burnout among nurses
Nanotechnology in cervical cancer immunotherapy: Therapeutic vaccines and adoptive cell therapy
Immunotherapy is an emerging method for the treatment of cervical cancer and is more effective than surgery and radiotherapy, especially for recurrent cervical cancer. However, immunotherapy is limited by adverse effects in clinical practice. In recent years, nanotechnology has been widely used for tumor diagnosis, drug delivery, and targeted therapy. In the setting of cervical cancer, nanotechnology can be used to actively or passively target immunotherapeutic agents to tumor sites, thereby enhancing local drug delivery, reducing drug adverse effects, achieving immunomodulation, improving the tumor immune microenvironment, and optimizing treatment efficacy. In this review, we highlight the current status of therapeutic vaccines and adoptive cell therapy in cervical cancer immunotherapy, as well as the application of lipid carriers, polymeric nanoparticles, inorganic nanoparticles, and exosomes in this context
- …
