3,986 research outputs found
Compact extra-dimensions as solution to the strong CP problem
We show that the strong CP problem can, in principle, be solved dynamically
by adding extra-dimensions with compact topology. To this aim we consider a toy
model for QCD, which contains a vacuum angle and a strong CP like problem. We
further consider a higher dimensional theory, which has a trivial vacuum
structure and which reproduces the perturbative properties of the toy model in
the low-energy limit. In the weak coupling regime, where our computations are
valid, we show that the vacuum structure of the low-energy action is still
trivial and the strong CP problem is solved. No axion-like particle occur in
this setup and therefore it is not ruled out by astrophysical bounds.Comment: Discussion adde
HAPS Gateway Link in the 5850-7075 MHz and Coexistence with Fixed Satellite Service
Gateway link is essential to connect HAPS platform to terrestrial based networks. This crucial link is incorporated in HAPS fixed service spectrum allocation in considerably high frequencies, renders the link for more attenuations by atmospheric gases, and rain effects, especially when the regional climate is not favorable. However, under the agenda item 1.20 of World Radio Conference-2012 (WRC-12) new HAPS allocation in the 5850-7075 MHz band is proposed. Although, spectrum features are incomparably reliable, on the contrary, Fixed Satellite Service (FSS) uplink transmissions will have signal levels much higher than those in HAPS systems and have the potential for causing interference at the HAPS gateway receiver. In this article a key aspect of co-channel interference phenomena is investigated to facilitate optimum frequency sharing in the band in question. By proposing mitigation techniques and statistical method this generic prediction model enhances the capability of the HAPS spectrum sharing and provides flexibility in spectrum planning for different fixed services
First Order Semiclassical Thermal String in the AdS Spacetime
We formulate the finite temperature theory for the free thermal excitations
of the bosonic string in the anti-de Sitter (AdS) spacetime in the Thermo Field
Dynamics (TFD) approach. The spacetime metric is treated exactly while the
string and the thermal reservoir are semiclassically quantized at the first
order perturbation theory with respect to the dimensionless parameter \epsilon
= \a ' H^{-2}. In the conformal black-hole AdS background the
quantization is exact. The method can be extended to the arbitrary AdS
spacetime only in the first order perturbation. This approximation is taken in
the center of mass reference frame and it is justified by the fact that at the
first order the string dynamics is determined only by the interaction between
the {\em free} string oscillation modes and the {\em exact} background. The
first order thermal string is obtained by thermalization of the system
carried on by the TFD Bogoliubov operator. We determine the free thermal string
states and compute the local entropy and free energy in the center of mass
reference frame.Comment: Minor typos corrected. Two references added. LATeX file, 19 page
Anomalous Soft Photons in Hadron Production
Anomalous soft photons in excess of what is expected from electromagnetic
bremsstrahlung have been observed in association with the production of
hadrons, mostly mesons, in high-energy (K+)p, (pi+)p, (pi-)p, pp, and (e+)(e-)
collisions. We propose a model for the simultaneous production of anomalous
soft photons and mesons in quantum field theory, in which the meson production
arises from the oscillation of color charge densities of the quarks of the
underlying vacuum in the flux tube. As a quark carries both a color charge and
an electric charge, the oscillation of the color charge densities will be
accompanied by the oscillation of electric charge densities, which will in turn
lead to the simultaneous production of soft photons during the meson production
process. How the production of these soft photons may explain the anomalous
soft photon data will be discussed. Further experimental measurements to test
the model will be proposed.Comment: 19 pages, 2 figures, to be published in Physical Review
TFD Approach to Bosonic Strings and -branes
In this work we explain the construction of the thermal vacuum for the
bosonic string, as well that of the thermal boundary state interpreted as a
-brane at finite temperature. In both case we calculate the respective
entropy using the entropy operator of the Thermo Field Dynamics Theory. We show
that the contribution of the thermal string entropy is explicitly present in
the -brane entropy. Furthermore, we show that the Thermo Field approach
is suitable to introduce temperature in boundary states.Comment: 6 pages, revtex, typos are corrected. Prepared for the Second
Londrina Winter School-Mathematical Methods in Physics, August 25-30, 2002,
Londrina-Pr, Brazil. To appear in a special issue of IJMP
One-loop fermionic corrections to the instanton transition in two dimensional chiral Higgs model
The one-loop fermionic contribution to the probability of an instanton
transition with fermion number violation is calculated in the chiral Abelian
Higgs model in 1+1 dimensions, where the fermions have a Yukawa coupling to the
scalar field. The dependence of the determinant on fermionic, scalar and vector
mass is determined. We show in detail how to renormalize the fermionic
determinant in partial wave analysis, which is convenient for computations.Comment: 36 pages, 5 figure
Structure and functional motifs of GCR1, the only plant protein with a GPCR fold?
Whether GPCRs exist in plants is a fundamental biological question. Interest in deorphanizing new G
protein coupled receptors (GPCRs), arises because of their importance in signaling. Within plants, this
is controversial as genome analysis has identified 56 putative GPCRs, including GCR1 which is
reportedly a remote homologue to class A, B and E GPCRs. Of these, GCR2, is not a GPCR; more
recently it has been proposed that none are, not even GCR1. We have addressed this disparity
between genome analysis and biological evidence through a structural bioinformatics study, involving
fold recognition methods, from which only GCR1 emerges as a strong candidate. To further probe
GCR1, we have developed a novel helix alignment method, which has been benchmarked against the
the class A – class B - class F GPCR alignments. In addition, we have presented a mutually consistent
set of alignments of GCR1 homologues to class A, class B and class F GPCRs, and shown that GCR1
is closer to class A and /or class B GPCRs than class A, class B or class F GPCRs are to each other.
To further probe GCR1, we have aligned transmembrane helix 3 of GCR1 to each of the 6 GPCR
classes. Variability comparisons provide additional evidence that GCR1 homologues have the GPCR
fold. From the alignments and a GCR1 comparative model we have identified motifs that are common
to GCR1, class A, B and E GPCRs. We discuss the possibilities that emerge from this controversial
evidence that GCR1 has a GPCR fol
PP-Wave Light-Cone Free String Field Theory at Finite Temperature
In this paper, a real-time formulation of light-cone pp-wave string field
theory at finite temperature is presented. This is achieved by developing the
thermo field dynamics (TFD) formalism in a second quantized string scenario.
The equilibrirum thermodynamic quantities for a pp-wave ideal string gas are
derived directly from expectation values on the second quantized string thermal
vacuum. Also, we derive the real-time thermal pp-wave closed string propagator.
In the flat space limit it is shown that this propagator can be written in
terms of Theta functions, exactly as the zero temperature one. At the end, we
show how supestrings interactions can be introduced, making this approach
suitable to study the BMN dictionary at finite temperature.Comment: 27 pages, revtex
Generalized BFT Formalism of Electroweak Theory in the Unitary Gauge
We systematically embed the SU(2)U(1) Higgs model in the unitary
gauge into a fully gauge-invariant theory by following the generalized BFT
formalism. We also suggest a novel path to get a first-class Lagrangian
directly from the original second-class one using the BFT fields.Comment: 14 pages, Latex, no figure
- …
