1,920 research outputs found
Application of thermoluminescence for detection of cascade shower 1: Hardware and software of reader system
A reader system for the detection of cascade showers via luminescence induced by heating sensitive material (BaSO4:Eu) is developed. The reader system is composed of following six instruments: (1) heater, (2) light guide, (3) image intensifier, (4) CCD camera, (5) image processor, (6) microcomputer. The efficiency of these apparatuses and software application for image analysis is reported
Application of thermoluminescence for detection of cascade shower 2: Detection of cosmic ray cascade shower at Mount Fuji
The results of a thermoluminescence (TL) chamber exposed at Mt. Fuji during Aug. '83 - Aug. '84 are reported. The TL signal induced by cosmic ray shower is detected and compared with the spot darkness of X-ray film exposed at the same time
Development of Optimization Tool for Air Conditioning System Operation
This study aims to realize the optimization of the air-conditioning system operation. Although set values of air-conditioning systems are usually fixed, variable setting values are used in this study. It is possible that less energy consumption with greater comfort is achieved by selecting appropriate set values in consideration of situations which change from day to day. In this study, the optimization of air-conditioning system operation is carried out by selecting appropriate set values in terms of energy consumptions and the comfort. The prediction of building heat loads is necessary to realize the optimization in ever-changing environments. Therefore, a more robust optimization method which handles errors in the prediction was proposed, and the optimization tool for an air-conditioning system was developed. The developed optimization tool is incorporated into the Building and Energy Management System (BEMS), and it automatically changes setting values acquiring data including driving data from the BEMS. Experiments were conducted to clarify the effectiveness of the tool, and simulations in the case of a medium-scale office building were also done for the evaluation of the tool. Experiments prove that the evaluation value tends to improve by using the optimization tool. As the result of simulations, it is found out that the evaluation value improves by considering prediction errors and that the evaluation value is reduced by 12.1% at maximum
Regulation of polarised growth in fungi
Polarised growth in fungi occurs through the delivery of secretory vesicles along tracks formed by cytoskeletal elements to specific sites on the cell surface where they dock with a multiprotein structure called the exocyst before fusing with the plasmamembrane. The budding yeast, Saccharomyces cerevisiae has provided a useful model to investigate the mechanisms involved and their control. Cortical markers, provided by bud site selection pathways during budding, the septin ring during cytokinesis or the stimulation of the pheromone response receptors during mating, act through upstream signalling pathways to localise Cdc24, the GEF for the rho family GTPase, Cdc42. Cdc42 in its GTP-bound activates a multiprotein protein complex called the polarisome which nucleates actin cables along which the secretory vesicles are transported to the cell surface. Hyphae can elongate at a rate orders of magnitude faster than the extension of a yeast bud, so understanding hyphal growth will require substantial modification of the yeast paradigm. The rapid rate of hyphal growth is driven by a structure called the Spitzenkörper, located just behind the growing tip and which is rich in secretory vesicles. It is thought that secretory vesicles are delivered to the apical region where they accumulate in the Spitzenkörper. The Spitzenkörper then acts as vesicle supply centre in which vesicles exit the Spitzenkörper in all directions, but because of its proximity, the tip receives a greater concentration of vesicles per unit area than subapical regions. There are no obvious equivalents to the bud site selection pathway to provide a spatial landmark for polarised growth in hyphae. However, an emerging model is the way that the site of polarised growth in the fission yeast, Schizosaccharomyces pombe, is marked by delivery of the kelch repeat protein, Tea1, along microtubules. The relationship of the Spitzenkörper to the polarisome and the mechanisms that promote its formation are key questions that form the focus of current research
CD20 and CD19 targeted vectors induce minimal activation of resting B lymphocytes
B lymphocytes are an important cell population of the immune system. However, until recently it was not possible to transduce resting B lymphocytes with retro- or lentiviral vectors, making them unsusceptible for genetic manipulations by these vectors. Lately, we demonstrated that lentiviral vectors pseudotyped with modified measles virus (MV) glycoproteins hemagglutinin, responsible for receptor recognition, and fusion protein were able to overcome this transduction block. They use either the natural MV receptors, CD46 and signaling lymphocyte activation molecule (SLAM), for cell entry (MV-LV) or the vector particles were further modified to selectively enter via the CD20 molecule, which is exclusively expressed on B lymphocytes (CD20-LV). It has been shown previously that transduction by MV-LV does not induce B lymphocyte activation. However, if this is also true for CD20-LV is still unknown. Here, we generated a vector specific for another B lymphocyte marker, CD19, and compared its ability to transduce resting B lymphocytes with CD20-LV. The vector (CD19ds-LV) was able to stably transduce unstimulated B lymphocytes, albeit with a reduced efficiency of about 10% compared to CD20-LV, which transduced about 30% of the cells. Since CD20 as well as CD19 are closely linked to the B lymphocyte activation pathway, we investigated if engagement of CD20 or CD19 molecules by the vector particles induces activating stimuli in resting B lymphocytes. Although, activation of B lymphocytes often involves calcium influx, we did not detect elevated calcium levels. However, the activation marker CD71 was substantially up-regulated upon CD20-LV transduction and most importantly, B lymphocytes transduced with CD20-LV or CD19ds-LV entered the G1b phase of cell cycle, whereas untransduced or MV-LV transduced B lymphocytes remained in G0. Hence, CD20 and CD19 targeting vectors induce activating stimuli in resting B lymphocytes, which most likely renders them susceptible for lentiviral vector transduction
Characterization of the QUartz Photon Intensifying Detector (QUPID) for Noble Liquid Detectors
Dark Matter and Double Beta Decay experiments require extremely low
radioactivity within the detector materials. For this purpose, the University
of California, Los Angeles and Hamamatsu Photonics have developed the QUartz
Photon Intensifying Detector (QUPID), an ultra-low background photodetector
based on the Hybrid Avalanche Photo Diode (HAPD) and entirely made of
ultraclean synthetic fused silica. In this work we present the basic concept of
the QUPID and the testing measurements on QUPIDs from the first production
line. Screening of radioactivity at the Gator facility in the Laboratori
Nazionali del Gran Sasso has shown that the QUPIDs safely fulfill the low
radioactive contamination requirements for the next generation zero background
experiments set by Monte Carlo simulations. The quantum efficiency of the QUPID
at room temperature is > 30% at the xenon scintillation wavelength. At low
temperatures, the QUPID shows a leakage current less than 1 nA and a global
gain of 10^5. In these conditions, the photocathode and the anode show > 95%
linearity up to 1 uA for the cathode and 3 mA for the anode. The photocathode
and collection efficiency are uniform to 80% over the entire surface. In
parallel with single photon counting capabilities, the QUPIDs have a good
timing response: 1.8 +/- 0.1 ns rise time, 2.5 +/- 0.2 ns fall time, 4.20 +/-
0.05 ns pulse width, and 160 +/- 30 ps transit time spread. The QUPIDs have
also been tested in a liquid xenon environment, and scintillation light from
57Co and 210Po radioactive sources were observed.Comment: 15 pages, 22 figure
Time resolved spectroscopy of BD+46 442: gas streams and jet creation in a newly discovered evolved binary with a disk
Previous studies have shown that many post-AGB stars with dusty disks are
associated with single-lined binary stars. To verify the binarity hypothesis on
a larger sample, we started a high-resolution spectral monitoring of about 40
field giants, whose binarity was suspected based on either a light curve, an
infrared excess, or a peculiar chemical composition. Here we report on the
discovery of the periodic RV variations in BD+46 442, a high-latitude F giant
with a disk. We interpret the variations due to the motion around a faint
companion, and deduce the following orbital parameters: Porb = 140.77 d, e =
0.083, asini=0.31 AU. We find it to be a moderately metal-poor star
([M/H]=-0.7) without a strong depletion pattern in the photospheric abundances.
Interestingly, many lines show periodic changes with the orbital phase: Halpha
switches between a double-peak emission and a PCyg-like profiles, while strong
metal lines appear split during the maximum redshift. Similar effects are
likely visible in the spectra of other post-AGB binaries, but their regularity
is not always realized due to sporadic observations. We propose that these
features result from an ongoing mass transfer from the evolved giant to the
companion. In particular, the blue-shifted absorption in Halpha, which occurs
only at superior conjunction, may result from a jet originating in the
accretion disk around the companion and seen in absorption towards the luminous
primary.Comment: 16 pages, accepted in A&
The Majorana Project
Building a \BBz experiment with the ability to probe neutrino mass in the
inverted hierarchy region requires the combination of a large detector mass
sensitive to \BBz, on the order of 1-tonne, and unprecedented background
levels, on the order of or less than 1 count per year in the \BBz signal
region. The MAJORANA Collaboration proposes a design based on using high-purity
enriched Ge-76 crystals deployed in ultra-low background electroformed Cu
cryostats and using modern analysis techniques that should be capable of
reaching the required sensitivity while also being scalable to a 1-tonne size.
To demonstrate feasibility, the collaboration plans to construct a prototype
system, the MAJORANA DEMONSTRATOR, consisting of 30 kg of 86% enriched \Ge-76
detectors and 30 kg of natural or isotope-76-depleted Ge detectors. We plan to
deploy and evaluate two different Ge detector technologies, one based on a
p-type configuration and the other on n-type.Comment: paper submitted for the 2008 Carolina International Symposium on
Neutrino Physic
- …
