1,476 research outputs found
Ice nucleation from aqueous NaCl droplets with and without marine diatoms
Ice formation in the atmosphere by homogeneous and heterogeneous nucleation is one of the least understood processes in cloud microphysics and climate. Here we describe our investigation of the marine environment as a potential source of atmospheric IN by experimentally observing homogeneous ice nucleation from aqueous NaCl droplets and comparing against heterogeneous ice nucleation from aqueous NaCl droplets containing intact and fragmented diatoms. Homogeneous and heterogeneous ice nucleation are studied as a function of temperature and water activity, <i>a</i><sub>w</sub>. Additional analyses are presented on the dependence of diatom surface area and aqueous volume on heterogeneous freezing temperatures, ice nucleation rates, &omega;<sub>het</sub>, ice nucleation rate coefficients, <i>J</i><sub>het</sub>, and differential and cumulative ice nuclei spectra, <i>k(T)</i> and <i>K(T)</i>, respectively. Homogeneous freezing temperatures and corresponding nucleation rate coefficients are in agreement with the water activity based homogeneous ice nucleation theory within experimental and predictive uncertainties. Our results confirm, as predicted by classical nucleation theory, that a stochastic interpretation can be used to describe the homogeneous ice nucleation process. Heterogeneous ice nucleation initiated by intact and fragmented diatoms can be adequately represented by a modified water activity based ice nucleation theory. A horizontal shift in water activity, &Delta;<i>a</i><sub>w, het</sub> = 0.2303, of the ice melting curve can describe median heterogeneous freezing temperatures. Individual freezing temperatures showed no dependence on available diatom surface area and aqueous volume. Determined at median diatom freezing temperatures for <i>a</i><sub>w</sub> from 0.8 to 0.99, &omega;<sub>het</sub><u>~</u>0.11<sup>+0.06</sup><sub>&minus;0.05</sub> s<sup>−1</sup>, <i>J</i><sub>het</sub><u>~</u>1.0<sup>+1.16</sup><sub>&minus;0.61</sub>&times;10<sup>4</sup> cm<sup>−2</sup> s<sup>−1</sup>, and <i>K</i><u>~</u>6.2<sup>+3.5</sup><sub>&minus;4.1</sub> &times;10<sup>4</sup> cm<sup>−2</sup>. The experimentally derived ice nucleation rates and nuclei spectra allow us to estimate ice particle production which we subsequently use for a comparison with observed ice crystal concentrations typically found in cirrus and polar marine mixed-phase clouds. Differences in application of time-dependent and time-independent analyses to predict ice particle production are discussed
Universality in solar flare and earthquake occurrence
Earthquakes and solar flares are phenomena involving huge and rapid releases
of energy characterized by complex temporal occurrence. By analysing available
experimental catalogs, we show that the stochastic processes underlying these
apparently different phenomena have universal properties. Namely both problems
exhibit the same distributions of sizes, inter-occurrence times and the same
temporal clustering: we find afterflare sequences with power law temporal
correlations as the Omori law for seismic sequences. The observed universality
suggests a common approach to the interpretation of both phenomena in terms of
the same driving physical mechanism
Continuum-plasma solution surrounding nonemitting spherical bodies
The classical problem of the interaction of a nonemitting spherical body with a zero mean-free-path continuum plasma is solved numerically in the full range of physically allowed free parameters (electron Debye length to body radius ratio, ion to electron temperature ratio, and body bias), and analytically in rigorously defined asymptotic regimes (weak and strong bias, weak and strong shielding, thin and thick sheath). Results include current-voltage characteristics as well as floating potential and capacitance, for both continuum and collisionless electrons. Our numerical computations show that for most combinations of physical parameters, there exists a closest asymptotic regime whose analytic solutions are accurate to 15% or better
Researching the use of force: The background to the international project
This article provides the background to an international project on use of force by the police that was carried out in eight countries. Force is often considered to be the defining characteristic of policing and much research has been conducted on the determinants, prevalence and control of the use of force, particularly in the United States. However, little work has looked at police officers’ own views on the use of force, in particular the way in which they justify it. Using a hypothetical encounter developed for this project, researchers in each country conducted focus groups with police officers in which they were encouraged to talk about the use of force. The results show interesting similarities and differences across countries and demonstrate the value of using this kind of research focus and methodology
Extremal Optimization for Graph Partitioning
Extremal optimization is a new general-purpose method for approximating
solutions to hard optimization problems. We study the method in detail by way
of the NP-hard graph partitioning problem. We discuss the scaling behavior of
extremal optimization, focusing on the convergence of the average run as a
function of runtime and system size. The method has a single free parameter,
which we determine numerically and justify using a simple argument. Our
numerical results demonstrate that on random graphs, extremal optimization
maintains consistent accuracy for increasing system sizes, with an
approximation error decreasing over runtime roughly as a power law t^(-0.4). On
geometrically structured graphs, the scaling of results from the average run
suggests that these are far from optimal, with large fluctuations between
individual trials. But when only the best runs are considered, results
consistent with theoretical arguments are recovered.Comment: 34 pages, RevTex4, 1 table and 20 ps-figures included, related papers
available at http://www.physics.emory.edu/faculty/boettcher
A Toy Model for Testing Finite Element Methods to Simulate Extreme-Mass-Ratio Binary Systems
Extreme mass ratio binary systems, binaries involving stellar mass objects
orbiting massive black holes, are considered to be a primary source of
gravitational radiation to be detected by the space-based interferometer LISA.
The numerical modelling of these binary systems is extremely challenging
because the scales involved expand over several orders of magnitude. One needs
to handle large wavelength scales comparable to the size of the massive black
hole and, at the same time, to resolve the scales in the vicinity of the small
companion where radiation reaction effects play a crucial role. Adaptive finite
element methods, in which quantitative control of errors is achieved
automatically by finite element mesh adaptivity based on posteriori error
estimation, are a natural choice that has great potential for achieving the
high level of adaptivity required in these simulations. To demonstrate this, we
present the results of simulations of a toy model, consisting of a point-like
source orbiting a black hole under the action of a scalar gravitational field.Comment: 29 pages, 37 figures. RevTeX 4.0. Minor changes to match the
published versio
Finding community structure in networks using the eigenvectors of matrices
We consider the problem of detecting communities or modules in networks,
groups of vertices with a higher-than-average density of edges connecting them.
Previous work indicates that a robust approach to this problem is the
maximization of the benefit function known as "modularity" over possible
divisions of a network. Here we show that this maximization process can be
written in terms of the eigenspectrum of a matrix we call the modularity
matrix, which plays a role in community detection similar to that played by the
graph Laplacian in graph partitioning calculations. This result leads us to a
number of possible algorithms for detecting community structure, as well as
several other results, including a spectral measure of bipartite structure in
networks and a new centrality measure that identifies those vertices that
occupy central positions within the communities to which they belong. The
algorithms and measures proposed are illustrated with applications to a variety
of real-world complex networks.Comment: 22 pages, 8 figures, minor corrections in this versio
Spherical probes at ion saturation in E × B fields
The ion saturation current to a spherical probe in the entire range of ion
magnetization is computed with SCEPTIC3D, a newthree-dimensional version
of the kinetic code SCEPTIC designed to study transverse plasma flows. Results
are compared with prior two-dimensional calculations valid in the magneticfree
regime (Hutchinson 2002 Plasma Phys. Control. Fusion 44 1953), and
with recent semi-analytic solutions to the strongly magnetized transverse Mach
probe problem (Patacchini and Hutchinson 2009 Phys. Rev. E 80 036403).
At intermediate magnetization (ion Larmor radius close to the probe radius)
the plasma density profiles show a complex three-dimensional structure that
SCEPTIC3D can fully resolve, and, contrary to intuition, the ion current peaks
provided the ion temperature is low enough. Our results are conveniently
condensed in a single factor M[subscript c], function of ion temperature and magnetic
field only, providing the theoretical calibration for a transverse Mach probe
with four electrodes placed at 45◦ to the magnetic field in a plane of flow and
magnetic field
From DNA sequence to application: possibilities and complications
The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORF’s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems.
The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons.
Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.
- …
