261,109 research outputs found
On universal decoherence under gravity: a perspective through the Equivalence Principle
In Nature Phys. 11, 668 (2015) (Ref. [1]), a composite particle prepared in a
pure initial quantum state and propagated in a uniform gravitational field is
shown to undergo a decoherence process at a rate determined by the
gravitational acceleration. By assuming Einstein's Equivalence Principle to be
valid, we demonstrate, first in a Lorentz frame with accelerating detectors,
and then directly in the Lab frame with uniform gravity, that the dephasing
between the different internal states arise not from gravity but rather from
differences in their rest mass, and the mass dependence of the de Broglie
wave's dispersion relation. We provide an alternative view to the situation
considered by Ref. [1], where we propose that gravity plays a kinematic role in
the loss of fringe visibility by giving the detector a transverse velocity
relative to the particle beam; visibility can be easily recovered by giving the
screen an appropriate uniform velocity. We finally propose that dephasing due
to gravity may in fact take place for certain modifications to the
gravitational potential where the Equivalence Principle is violated.Comment: 5 pages, 3 figure
Correlation between Peak Energy and Peak Luminosity in Short Gamma-Ray Bursts
A correlation between the peak luminosity and the peak energy has been found
by Yonetoku et al. as for 11 pre-Swift long
gamma-ray bursts. In this study, for a greatly expanded sample of 148 long
gamma-ray bursts in the Swift era, we find that the correlation still exists,
but most likely with a slightly different power-law index, i.e., . In addition, we have collected 17 short gamma-ray bursts with
necessary data. It is found that the correlation of also exists for this sample of short events. It is argued that the
radiation mechanism of both long and short gamma-ray bursts should be similar,
i.e., of quasi-thermal origin caused by the photosphere and the dissipation
occurring very near the central engine. Some key parameters of the process are
constrained. Our results suggest that the radiation process of both long and
short bursts may be dominated by thermal emission, rather than the single
synchrotron radiation. This might put strong physical constraints on the
theoretical models.Comment: 22 pages, 5 figures and 1 table, Accepted for publication in Ap
Doppler Amplification of Motion of a Trapped Three-Level Ion
The system of a trapped ion translationally excited by a blue-detuned
near-resonant laser, sometimes described as an instance of a phonon laser, has
recently received attention as interesting in its own right and for its
application to non-destructive readout of internal states of non-fluorescing
ions. Previous theoretical work has been limited to cases of two-level ions.
Here, we perform simulations to study the dynamics of a phonon laser involving
the -type ^{138}\mbox{Ba}^{+} ion, in which coherent population
trapping effects lead to different behavior than in the previously studied
cases. We also explore optimization of the laser parameters to maximize
amplification gain and signal-to-noise ratio for internal state readout
Marginally Trapped Surfaces in the Nonsymmetric Gravitational Theory
We consider a simple, physical approach to the problem of marginally trapped
surfaces in the Nonsymmetric Gravitational Theory (NGT). We apply this approach
to a particular spherically symmetric, Wyman sector gravitational field,
consisting of a pulse in the antisymmetric field variable. We demonstrate that
marginally trapped surfaces do exist for this choice of initial data.Comment: REVTeX 3.0 with epsf macros and AMS symbols, 3 pages, 1 figur
Heterodimerization of apelin receptor and neurotensin receptor 1 induces phosphorylation of ERK1/2 and cell proliferation via Gαq-mediated mechanism
Dimerization of G protein-coupled receptors (GPCRs) is crucial for receptor function including agonist affinity, efficacy, trafficking and specificity of signal transduction, including G protein coupling. Emerging data suggest that the cardiovascular system is the main target of apelin, which exerts an overall neuroprotective role, and is a positive regulator of angiotensin-converting enzyme 2 (ACE2) in heart failure. Moreover, ACE2 cleaves off C-terminal residues of vasoactive peptides including apelin-13, and neurotensin that activate the apelin receptor (APJ) and neurotensin receptor 1 (NTSR1) respectively, that belong to the A class of GPCRs. Therefore, based on the similar mode of modification by ACE2 at peptide level, the homology at amino acid level and the capability of forming dimers with other GPCRs, we have been suggested that APJ and NTSR1 can form a functional heterodimer. Using co-immunoprecipitation, BRET and FRET, we provided conclusive evidence of heterodimerization between APJ and NTSR1 in a constitutive and induced form. Upon agonist stimulation, hetrodimerization enhanced ERK1/2 activation and increased proliferation via activation of Gq α-subunits. These novel data provide evidence for a physiological role of APJ/NTSR1 heterodimers in terms of ERK1/2 activation and increased intracellular calcium and induced cell proliferation and provide potential new pharmaceutical targets for cardiovascular disease. © 2014 The Authors
- …
