165 research outputs found
La mise à l'équilibre des eaux tropicales : conséquences sur la déferrisation
L'étude de l'équilibre calco-carbonique d'une eau souterraine de l'Afrique de l'Ouest par la méthode de LEGRAND et POIRIER, a conduit à la détermination des conditions de traitement pour neutraliser l'agressivité naturelle de l'eau, due essentiellement à une forte teneur en acide carbonique et réduire ainsi son caractère corrosif. le problème de l'évolution du fer présent en relation avec la mise à l'équilibre a été également étudiée.L'application réalisée sur un pilote de laboratoire a permis d'optimiser les principales étapes du traitement, c'est-à-dire l'addition d'une base forte, la précipitation et la filtration des hydroxydes ferriques qui se forment à la suite de la neutralisation de l'acide carbonique.Studies on calcium carbonate equilibrium of West African ground water, a sample of potable water distributed in Lomé (Togo), were carried out using the method described by LEGRAND and POIRIER. It is a standard graphic method in which calculations include all basic (Ca++, HCO3-, CO3--, CO2, H2O+, OH-), and characteristic (Mg++, Na+, K+, SO4--, Cl- ...) chemical parameters of natural water. Processing of a computer program for calculations enabled the equilibrium and saturation curve [CO2] = f[Ca++], to be obtained. The aggressivity to the lime deposit character, different conditions of treatment, aeration, and addition of an appropriate base to neutralise the nature aggressivity of water due to its high dissolved carbon dioxide content could also be defined.The problem of the presence of iron was studied; high concentration of iron in natural ground water lead to various problems : developing of tastes, staining and discoloration of clothes, and growth of iron bacteria in the distribution system. Its removal from water is accomplished by means of the oxidation of iron (II) to iron (III) followed by the precipitation of relatively insoluble ferric hydroxide. The oxidation rate is highly dependent on pH. Thus, the process of removal of carbon dioxide by stripping or neutralisation raises the pH of the water. If the pH is raised high enough, an insoluble form of iron will precipitate. Another important aspect of the chemical behaviour of iron is the formation of complex ions with inorganic as well as organic ligands; silica in water forms a relatively stable complex with iron (III). The difficulty in removing iron from water is often associated with this phenomenon.Continuous flow studies were carried out to improve important steps of treatment such as addition of a strong base, and precipitation and filtration of ferric hydroxide produced during carbonic acid neutralization. They show the weak stability of silicato-iron (III) complex at high pH value and prove that practically complete iron removal may be obtained
Developing a Relationship Between LIBS Spectra and Pit Volume for in Situ Dating of Geologic Samples
No abstract availabl
Relationship Between LIBS Ablation and Pit Volume for Geologic Samples: Applications for the In Situ Absolute Geochronology
These first results demonstrate that LIBS spectra can be an interesting tool to estimate the ablated volume. When the ablated volume is bigger than 9.10(exp 6) cubic micrometers, this method has less than 10% of uncertainties. Far enough to be directly implemented in the KArLE experiment protocol. Nevertheless, depending on the samples and their mean grain size, the difficulty to have homogeneous spectra will increase with the ablated volume. Several K-Ar dating studies based on this approach will be implemented. After that, the results will be shown and discussed
Caractérisation de deux effluents industriels au Togo :étude d’impact sur l’environnement
Characterization of two industrial effluents in Togo : environment impact studyEnvironment pollution due to two industrial effluents has been investigated. Results how that effluent derive from the factory of the treatment of Kpémé posphate ore was loaded with settling suspended matter (> 90 % of total suspended solids). Suspended solids contained metallic elements, about 17.5 μg g-1 as cadmium (Cd) were measured. Water around the input point of the effluent (effluent is discharged in the sea) had a turbidity as high as 200 NTU. The study did not show a particular metallic contamination (Cd and Hg) of some fish species. Datcha textile industry effluent was characterized by high alkalinity (pH > 10) and by high concentrations of suspended solids (500-650 mg L-1), oxydable matter (COD = 340-380 mgO2 L-1) and organic nitrogen (30-40 mgN L-1)
Magnetoresistance through a single molecule
The use of single molecules to design electronic devices is an extremely
challenging and fundamentally different approach to further downsizing
electronic circuits. Two-terminal molecular devices such as diodes were first
predicted [1] and, more recently, measured experimentally [2]. The addition of
a gate then enabled the study of molecular transistors [3-5]. In general terms,
in order to increase data processing capabilities, one may not only consider
the electron's charge but also its spin [6,7]. This concept has been pioneered
in giant magnetoresistance (GMR) junctions that consist of thin metallic films
[8,9]. Spin transport across molecules, i.e. Molecular Spintronics remains,
however, a challenging endeavor. As an important first step in this field, we
have performed an experimental and theoretical study on spin transport across a
molecular GMR junction consisting of two ferromagnetic electrodes bridged by a
single hydrogen phthalocyanine (H2Pc) molecule. We observe that even though
H2Pc in itself is nonmagnetic, incorporating it into a molecular junction can
enhance the magnetoresistance by one order of magnitude to 52%.Comment: To appear in Nature Nanotechnology. Present version is the first
submission to Nature Nanotechnology, from May 18th, 201
Coagulation of some humic acid solutions by moringa oleifera lam seeds: effect on chlorine requirement
No Abstract. Bulletin of the Chemical Society of Ethiopia Vol. 15 (2) 2001: pp. 119-12
Controlling Curie temperature in (Ga,Ms)As through location of the Fermi level within the impurity band
The ferromagnetic semiconductor (Ga,Mn)As has emerged as the most studied
material for prototype applications in semiconductor spintronics. Because
ferromagnetism in (Ga,Mn)As is hole-mediated, the nature of the hole states has
direct and crucial bearing on its Curie temperature TC. It is vigorously
debated, however, whether holes in (Ga,Mn)As reside in the valence band or in
an impurity band. In this paper we combine results of channeling experiments,
which measure the concentrations both of Mn ions and of holes relevant to the
ferromagnetic order, with magnetization, transport, and magneto-optical data to
address this issue. Taken together, these measurements provide strong evidence
that it is the location of the Fermi level within the impurity band that
determines TC through determining the degree of hole localization. This finding
differs drastically from the often accepted view that TC is controlled by
valence band holes, thus opening new avenues for achieving higher values of TC.Comment: 5 figures, supplementary material include
Discriminatory, racist and xenophobic policies and practice against child refugees, asylum seekers and undocumented migrants in European health systems
Child refugees, asylum seekers and undocumented migrants who have been forcibly displaced from their countries of origin have heightened health needs as a consequence of their migration experiences. Host countries have a duty to respond to these needs, yet across Europe we are seeing a rise in potentially harmful discriminative, hostile and restrictive migration policies and practices. Research exploring the role racism, xenophobia and discrimination in European health systems may play in child migrant health inequities is lacking. This Personal View seeks to highlight this knowledge gap and stimulate discourse on how discrimination in health information systems, data sharing practices, national health policy, healthcare entitlements, service access, quality of care, and healthcare workers attitudes and behaviours may infringe upon the rights of, and impact the health of child refugees, asylum-seekers and undocumented migrants. It calls for action to prevent and mitigate against potentially harmful policies and practices
Ferromagnetic semiconductors
The current status and prospects of research on ferromagnetism in
semiconductors are reviewed. The question of the origin of ferromagnetism in
europium chalcogenides, chromium spinels and, particularly, in diluted magnetic
semiconductors is addressed. The nature of electronic states derived from 3d of
magnetic impurities is discussed in some details. Results of a quantitative
comparison between experimental and theoretical results, notably for Mn-based
III-V and II-VI compounds, are presented. This comparison demonstrates that the
current theory of the exchange interactions mediated by holes in the valence
band describes correctly the values of Curie temperatures T_C magnetic
anisotropy, domain structure, and magnetic circular dichroism. On this basis,
chemical trends are examined and show to lead to the prediction of
semiconductor systems with T_C that may exceed room temperature, an expectation
that are being confirmed by recent findings. Results for materials containing
magnetic ions other than Mn are also presented emphasizing that the double
exchange involving hoping through d states may operate in those systems.Comment: 18 pages, 8 figures; special issue of Semicon. Sci. Technol. on
semiconductor spintronic
Spintronics: Fundamentals and applications
Spintronics, or spin electronics, involves the study of active control and
manipulation of spin degrees of freedom in solid-state systems. This article
reviews the current status of this subject, including both recent advances and
well-established results. The primary focus is on the basic physical principles
underlying the generation of carrier spin polarization, spin dynamics, and
spin-polarized transport in semiconductors and metals. Spin transport differs
from charge transport in that spin is a nonconserved quantity in solids due to
spin-orbit and hyperfine coupling. The authors discuss in detail spin
decoherence mechanisms in metals and semiconductors. Various theories of spin
injection and spin-polarized transport are applied to hybrid structures
relevant to spin-based devices and fundamental studies of materials properties.
Experimental work is reviewed with the emphasis on projected applications, in
which external electric and magnetic fields and illumination by light will be
used to control spin and charge dynamics to create new functionalities not
feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes
from the published versio
- …
