9,066 research outputs found
Statistically Preserved Structures and Anomalous Scaling in Turbulent Active Scalar Advection
The anomalous scaling of correlation functions in the turbulent statistics of
active scalars (like temperature in turbulent convection) is understood in
terms of an auxiliary passive scalar which is advected by the same turbulent
velocity field. While the odd-order correlation functions of the active and
passive fields differ, we propose that the even-order correlation functions are
the same to leading order (up to a trivial multiplicative factor). The leading
correlation functions are statistically preserved structures of the passive
scalar decaying problem, and therefore universality of the scaling exponents of
the even-order correlations of the active scalar is demonstrated.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
Disorder in DNA-Linked Gold Nanoparticle Assemblies
We report experimental observations on the effect of disorder on the phase
behavior of DNA-linked nanoparticle assemblies. Variation in DNA linker lengths
results in different melting temperatures of the DNA-linked nanoparticle
assemblies. We observed an unusual trend of a non-monotonic ``zigzag'' pattern
in the melting temperature as a function of DNAlinker length. Linker DNA
resulting in unequal DNA duplex lengths introduces disorder and lowers the
melting temperature of the nanoparticle system. Comparison with free DNA
thermodynamics shows that such an anomalous zigzag pattern does not exist for
free DNA duplex melting, which suggests that the disorder introduced by unequal
DNA duplex lengths results in this unusual collective behavior of DNA-linked
nanoparticle assemblies.Comment: 4 pages, 4 figures, Phys.Rev.Lett. (2005), to appea
Application of convolve-multiply-convolve SAW processor for satellite communications
There is a need for a satellite communications receiver than can perform simultaneous multi-channel processing of single channel per carrier (SCPC) signals originating from various small (mobile or fixed) earth stations. The number of ground users can be as many as 1000. Conventional techniques of simultaneously processing these signals is by employing as many RF-bandpass filters as the number of channels. Consequently, such an approach would result in a bulky receiver, which becomes impractical for satellite applications. A unique approach utilizing a realtime surface acoustic wave (SAW) chirp transform processor is presented. The application of a Convolve-Multiply-Convolve (CMC) chirp transform processor is described. The CMC processor transforms each input channel into a unique timeslot, while preserving its modulation content (in this case QPSK). Subsequently, each channel is individually demodulated without the need of input channel filters. Circuit complexity is significantly reduced, because the output frequency of the CMC processor is common for all input channel frequencies. The results of theoretical analysis and experimental results are in good agreement
Development of EHD Ion-Drag Micropump for Microscale Electronics Cooling Systems
In this investigation, the numerical simulation of electrohydrodynamic (EHD)
ion-drag micropumps with micropillar electrode geometries have been performed.
The effect of micropillar height and electrode spacing on the performance of
the micropumps was investigated. The performance of the EHD micropump improved
with increased applied voltage and decreased electrode spacing. The optimum
micropillar height for the micropump with electrode spacing of 40m and
channel height of 100m at 200V was 40m, where a maximum mass flow
rate of 0.18g/min was predicted. Compared to that of planar electrodes, the 3D
micropillar electrode geometry enhanced the overall performance of the EHD
micropumps.Comment: Submitted on behalf of TIMA Editions
(http://irevues.inist.fr/tima-editions
Active and Passive Fields in Turbulent Transport: the Role of Statistically Preserved Structures
We have recently proposed that the statistics of active fields (which affect
the velocity field itself) in well-developed turbulence are also dominated by
the Statistically Preserved Structures of auxiliary passive fields which are
advected by the same velocity field. The Statistically Preserved Structures are
eigenmodes of eigenvalue 1 of an appropriate propagator of the decaying
(unforced) passive field, or equivalently, the zero modes of a related
operator. In this paper we investigate further this surprising finding via two
examples, one akin to turbulent convection in which the temperature is the
active scalar, and the other akin to magneto-hydrodynamics in which the
magnetic field is the active vector. In the first example, all the even
correlation functions of the active and passive fields exhibit identical
scaling behavior. The second example appears at first sight to be a
counter-example: the statistical objects of the active and passive fields have
entirely different scaling exponents. We demonstrate nevertheless that the
Statistically Preserved Structures of the passive vector dominate again the
statistics of the active field, except that due to a dynamical conservation law
the amplitude of the leading zero mode cancels exactly. The active vector is
then dominated by the sub-leading zero mode of the passive vector. Our work
thus suggests that the statistical properties of active fields in turbulence
can be understood with the same generality as those of passive fields.Comment: 13 pages, 13 figures, submitted to Phys. Rev.
- …
