64,219 research outputs found
Effect of hydrogel particle additives on water-accessible pore structure of sandy soils: A custom pressure plate apparatus and capillary bundle model
To probe the effects of hydrogel particle additives on the water-accessible
pore structure of sandy soils, we introduce a custom pressure plate method in
which the volume of water expelled from a wet granular packing is measured as a
function of applied pressure. Using a capillary bundle model, we show that the
differential change in retained water per pressure increment is directly
related to the cumulative cross-sectional area distribution of the
water-accessible pores with radii less than . This is validated by
measurements of water expelled from a model sandy soil composed of 2 mm
diameter glass beads. In particular, the expelled water is found to depend
dramatically on sample height and that analysis using the capillary bundle
model gives the same pore size distribution for all samples. The distribution
is found to be approximately log-normal, and the total cross-sectional area
fraction of the accessible pore space is found to be . We then report
on how the pore distribution and total water-accessible area fraction are
affected by superabsorbent hydrogel particle additives, uniformly mixed into a
fixed-height sample at varying concentrations. Under both fixed volume and free
swelling conditions, the total area fraction of water-accessible pore space in
a packing decreases exponentially as the gel concentration increases. The size
distribution of the pores is significantly modified by the swollen hydrogel
particles, such that large pores are clogged while small pores are formed
The Ultraviolet flash accompanying GRBs from neutron-rich internal shocks
In the neutron-rich internal shocks model for Gamma-ray Burts (GRBs), the
Lorentz factors (LFs) of ions shells are variable, so are the LFs of
accompanying neutron shells. For slow neutron shells with a typical LF tens,
the typical beta-decay radius reads R_{\beta,s} several 10^{14} cm, which is
much larger than the typical internal shocks radius 10^{13} cm, so their impact
on the internal shocks may be unimportant. However, as GRBs last long enough
(T_{90}>20(1+z) s), one earlier but slower ejected neutron shell will be swept
successively by later ejected ion shells in the range 10^{13}-10^{15} cm, where
slow neutrons have decayed significantly. We show in this work that ion shells
interacting with the beta-decay products of slow neutron shells can power a
ultraviolet (UV) flash bright to 12th magnitude during the prompt gamma-ray
emission phase or slightly delayed, which can be detected by the upcoming
Satellite SWIFT in the near future.Comment: 6 pages (2 eps figures), accepted for publication in ApJ
Probing spin entanglement by gate-voltage-controlled interference of current correlation in quantum spin Hall insulators
We propose an entanglement detector composed of two quantum spin Hall
insulators and a side gate deposited on one of the edge channels. For an ac
gate voltage, the differential noise contributed from the entangled electron
pairs exhibits the nontrivial step structures, from which the spin entanglement
concurrence can be easily obtained. The possible spin dephasing effects in the
quantum spin Hall insulators are also included.Comment: Physics Letters A in pres
Rain water transport and storage in a model sandy soil with hydrogel particle additives
We study rain water infiltration and drainage in a dry model sandy soil with
superabsorbent hydrogel particle additives by measuring the mass of retained
water for non-ponding rainfall using a self-built 3D laboratory set-up. In the
pure model sandy soil, the retained water curve measurements indicate that
instead of a stable horizontal wetting front that grows downward uniformly, a
narrow fingered flow forms under the top layer of water-saturated soil. This
rain water channelization phenomenon not only further reduces the available
rain water in the plant root zone, but also affects the efficiency of soil
additives, such as superabsorbent hydrogel particles. Our studies show that the
shape of the retained water curve for a soil packing with hydrogel particle
additives strongly depends on the location and the concentration of the
hydrogel particles in the model sandy soil. By carefully choosing the particle
size and distribution methods, we may use the swollen hydrogel particles to
modify the soil pore structure, to clog or extend the water channels in sandy
soils, or to build water reservoirs in the plant root zone
Strong GeV Emission Accompanying TeV Blazar H1426+428
For High frequency BL Lac objects (HBLs) like H1426+428, a significant
fraction of their TeV gamma-rays emitted are likely to be absorbed in
interactions with the diffuse IR background, yielding pairs. The
resulting pairs generate one hitherto undiscovered GeV emission by
inverse Compton scattering with the cosmic microwave background photons
(CMBPs). We study such emission by taking the 1998-2000 CAT data, the
reanalyzed 1999 & 2000 HEGRA data and the corresponding intrinsic spectra
proposed by Aharonian et al. (2003a). We numerically calculate the scattered
photon spectra for different intergalactic magnetic field (IGMF) strengths. If
the IGMF is about or weaker, there comes very strong GeV
emission, whose flux is far above the detection sensitivity of the upcoming
satellite GLAST! Considered its relatively high redshift (), the
detected GeV emission in turn provides us a valuable chance to calibrate the
poor known spectral energy distribution of the intergalactic infrared
background, or provides us some reliable constraints on the poorly known IGMF
strength.Comment: 5 pages, 1 figure. A&A in Pres
Recommended from our members
Thermal stress-induced charge and structure heterogeneity in emerging cathode materials
Nickel-rich layered oxide cathode materials are attractive near-term candidates for boosting the energy density of next generation lithium-ion batteries. The practical implementation of these materials is, however, hindered by unsatisfactory capacity retention, poor thermal stability, and oxygen release as a consequence of structural decomposition, which may have serious safety consequences. The undesired side reactions are often exothermic, causing complicated electro-chemo-mechanical interplay at elevated temperatures. In this work, we explore the effects of thermal exposure on chemically delithiated LiNi0.8Mn0.1Co0.1O2 (NMC-811) at a practical state-of-charge (50% Li content) and an over-charged state (25% Li content). A systematic study using a suite of advanced synchrotron radiation characterization tools reveals the dynamics of thermal behavior of the charged NMC-811, which involves sophisticated structural and chemical evolution; e.g. lattice phase transformation, transition metal (TM) cation migration and valence change, and lithium redistribution. These intertwined processes exhibit a complex 3D spatial heterogeneity and, collectively, form a valence state gradient throughout the particles. Our study sheds light on the response of NMC-811 to elevated temperature and highlights the importance of the cathode's thermal robustness for battery performance and safety
Spin-Polarized Electron Transport through Nanometer-Scale Al Grains
We investigate spin-polarized electron tunnelling through ensembles of
nanometer scale Al grains embedded between two Co-reservoirs at 4.2K, and
observe tunnelling-magnetoresistance (TMR) and effects from spin-precession in
the perpendicular applied magnetic field (the Hanle effect). The spin-coherence
time () measured using the Hanle effect is of order . The
dephasing is attributed to electron spin-precession in local magnetic fields.
Dephasing process does not destroy , which is strongly asymmetric with
bias voltage. The asymmetric TMR is explained by spin relaxation in Al grains
and asymmetric electron dwell times.Comment: 4 pages 4 figure
- …
