10,377 research outputs found
An Efficient Method for GPS Multipath Mitigation Using the Teager-Kaiser-Operator-based MEDLL
An efficient method for GPS multipath mitigation is proposed. The motivation for this proposed method is to integrate the Teager-Kaiser Operator (TKO) with the Multipath Estimating Delay Lock Loop (MEDLL) module to mitigate the GPS multipath efficiently. The general implementation process of the proposed method is that we first utilize the TKO to operate on the received signal’s Auto-Correlation Function (ACF) to get an initial estimate of the multipaths. Then we transfer the initial estimated results to the MEDLL module for a further estimation. Finally, with a few iterations which are less than those of the original MEDLL algorithm, we can get a more accurate estimate of the Line-Of-Sight (LOS) signal, and thus the goal of the GPS multipath mitigation is achieved. The simulation results show that compared to the original MEDLL algorithm, the proposed method can reduce the computation load and the hardware and/or software consumption of the MEDLL module, meanwhile, without decreasing the algorithm accuracy
Combining tower mixing ratio and community model data to estimate regional-scale net ecosystem carbon exchange by boundary layer inversion over 4 flux towers in the U.S.A.
We evaluated an idealized boundary layer (BL) model with simple parameterizations using vertical transport information from community model outputs (NCAR/NCEP Reanalysis and ECMWF Interim Analysis) to estimate regional-scale net CO2 fluxes from 2002 to 2007 at three forest and one grassland flux sites in the United States. The BL modeling approach builds on a mixed-layer model to infer monthly average net CO2 fluxes using high-precision mixing ratio measurements taken on flux towers. We compared BL model net ecosystem exchange (NEE) with estimates from two independent approaches. First, we compared modeled NEE with tower eddy covariance measurements. The second approach (EC-MOD) was a data-driven method that upscaled EC fluxes from towers to regions using MODIS data streams. Comparisons between modeled CO2 and tower NEE fluxes showed that modeled regional CO2 fluxes displayed interannual and intra-annual variations similar to the tower NEE fluxes at the Rannells Prairie and Wind River Forest sites, but model predictions were frequently different from NEE observations at the Harvard Forest and Howland Forest sites. At the Howland Forest site, modeled CO2 fluxes showed a lag in the onset of growing season uptake by 2 months behind that of tower measurements. At the Harvard Forest site, modeled CO2 fluxes agreed with the timing of growing season uptake but underestimated the magnitude of observed NEE seasonal fluctuation. This modeling inconsistency among sites can be partially attributed to the likely misrepresentation of atmospheric transport and/or CO2gradients between ABL and the free troposphere in the idealized BL model. EC-MOD fluxes showed that spatial heterogeneity in land use and cover very likely explained the majority of the data-model inconsistency. We show a site-dependent atmospheric rectifier effect that appears to have had the largest impact on ABL CO2 inversion in the North American Great Plains. We conclude that a systematic BL modeling approach provided new insights when employed in multiyear, cross-site synthesis studies. These results can be used to develop diagnostic upscaling tools, improving our understanding of the seasonal and interannual variability of surface CO2 fluxes
Luby Transform Coding Aided Iterative Detection for Downlink SDMA Systems
A Luby Transform (LT) coded downlink Spatial Division Multiple Access (SDMA) system using iterative detection is proposed, which invokes a low-complexity near-Maximum-Likelihood (ML) Sphere Decoder (SD). The Ethernet-based Internet section of the transmission chain inflicts random packet erasures, which is modelled by the Binary Erasure Channel (BEC), which the wireless downlink imposes both fading and noise. A novel log-Likelihood Ratio based packet reliability metric is used for identifying the channel-decoded packets, which are likely to be error-infested. Packets having residual errors must not be passed on to the KT decoder for the sake of avoiding LT-decoding –induced error propagation. The proposed scheme is capable of maintaining an infinitesimally low packet error ratio in the downlink of the wireless Internet for Eb/n0 values in excess of about 3dB
A New Biometric Template Protection using Random Orthonormal Projection and Fuzzy Commitment
Biometric template protection is one of most essential parts in putting a
biometric-based authentication system into practice. There have been many
researches proposing different solutions to secure biometric templates of
users. They can be categorized into two approaches: feature transformation and
biometric cryptosystem. However, no one single template protection approach can
satisfy all the requirements of a secure biometric-based authentication system.
In this work, we will propose a novel hybrid biometric template protection
which takes benefits of both approaches while preventing their limitations. The
experiments demonstrate that the performance of the system can be maintained
with the support of a new random orthonormal project technique, which reduces
the computational complexity while preserving the accuracy. Meanwhile, the
security of biometric templates is guaranteed by employing fuzzy commitment
protocol.Comment: 11 pages, 6 figures, accepted for IMCOM 201
Synchronized and Desynchronized Phases of Exciton-Polariton Condensates in the Presence of Disorder
Condensation of exciton-polaritons in semiconductor microcavities takes place
despite in plane disorder. Below the critical density the inhomogeneity of the
potential seen by the polaritons strongly limits the spatial extension of the
ground state. Above the critical density, in presence of weak disorder, this
limitation is spontaneously overcome by the non linear interaction, resulting
in an extended synchronized phase. This mechanism is clearly evidenced by
spatial and spectral studies, coupled to interferometric measurements. In case
of strong disorder, several non phase-locked (independent) condensates can be
evidenced. The transition from synchronized phase to desynchronized phase is
addressed considering multiple realizations of the disorder.Comment: 11 pages, 4 figures,corrected typos, added figure
Ultrafast Molecular Imaging by Laser Induced Electron Diffraction
We address the feasibility of imaging geometric and orbital structure of a
polyatomic molecule on an attosecond time-scale using the laser induced
electron diffraction (LIED) technique. We present numerical results for the
highest molecular orbitals of the CO2 molecule excited by a near infrared
few-cycle laser pulse. The molecular geometry (bond-lengths) is determined
within 3% of accuracy from a diffraction pattern which also reflects the nodal
properties of the initial molecular orbital. Robustness of the structure
determination is discussed with respect to vibrational and rotational motions
with a complete interpretation of the laser-induced mechanisms
- …
