55,303 research outputs found
How CMB and large-scale structure constrain chameleon interacting dark energy
We explore a chameleon type of interacting dark matter-dark energy scenario
in which a scalar field adiabatically traces the minimum of an effective
potential sourced by the dark matter density. We discuss extensively the effect
of this coupling on cosmological observables, especially the parameter
degeneracies expected to arise between the model parameters and other
cosmological parameters, and then test the model against observations of the
cosmic microwave background (CMB) anisotropies and other cosmological probes.
We find that the chameleon parameters and , which determine
respectively the slope of the scalar field potential and the dark matter-dark
energy coupling strength, can be constrained to and using CMB data alone. The latter parameter in particular is constrained
only by the late Integrated Sachs-Wolfe effect. Adding measurements of the
local Hubble expansion rate tightens the bound on by a factor of
two, although this apparent improvement is arguably an artefact of the tension
between the local measurement and the value inferred from Planck data in
the minimal CDM model. The same argument also precludes chameleon
models from mimicking a dark radiation component, despite a passing similarity
between the two scenarios in that they both delay the epoch of matter-radiation
equality. Based on the derived parameter constraints, we discuss possible
signatures of the model for ongoing and future large-scale structure surveys.Comment: 25 pages, 6 figure
Low-Dimensional Topology of Information Fusion
We provide an axiomatic characterization of information fusion, on the basis
of which we define an information fusion network. Our construction is
reminiscent of tangle diagrams in low dimensional topology. Information fusion
networks come equipped with a natural notion of equivalence. Equivalent
networks `contain the same information', but differ locally. When fusing
streams of information, an information fusion network may adaptively optimize
itself inside its equivalence class. This provides a fault tolerance mechanism
for such networks.Comment: 8 pages. Conference proceedings version. Will be superceded by a
journal versio
On the second moment for primes in an arithmetic progression
Assuming the Generalized Riemann Hypothesis, we obtain a lower bound within a
constant factor of the conjectured asymptotic result for the second moment for
primes in an individual arithmetic progression in short intervals. Previous
results were averaged over all progression of a given modulus. The method uses
a short divisor sum approximation for the von Mangoldt function, together with
some new results for binary correlations of this divisor sum approximation in
arithmetic progressions
Orthostatic-induced Hypotension Attenuates Cold Pressor Pain Perception
In recent years, numerous studies have established a connection between blood pressure and nocioception. While this connection is well documented in the literature, its underlying physiological mechanisms have yet to be elucidated. Much attention has focused on the relationship between cardiovascular regulatory centers and nocioception, yet the intricacies of this relationship have not been fully explored. Therefore, the purpose of this investigation was to examine the role of the baroreflex system as a modulator of pain perception. Twenty normotensive males participated in two laboratory sessions. Time to cold pain threshold and pain tolerance was measured at rest during the first visit. On visit two, blood pressure was orthostatically manipulated via tilt table at postures 90o, 120o, and 180o. Orthostatic manipulation significantly lowered systolic blood pressure (SBP), pain threshold, and pain tolerance from seated baseline at 120o and 180o. The regression models for baroreceptor reflex sensitivity (BRS) assessed during seated baseline and at 120o and 180o revealed a significant negative beta weight for the effect of SBP. A significant negative beta weight for the effects of BRS, SBP, and their interaction was observed at 90o. In conclusion, orthostatic baroreceptor activation appears to exert an inhibitory effect on the brain that decreases pain sensitivity
Stabilizing Randomly Switched Systems
This article is concerned with stability analysis and stabilization of
randomly switched systems under a class of switching signals. The switching
signal is modeled as a jump stochastic (not necessarily Markovian) process
independent of the system state; it selects, at each instant of time, the
active subsystem from a family of systems. Sufficient conditions for stochastic
stability (almost sure, in the mean, and in probability) of the switched system
are established when the subsystems do not possess control inputs, and not
every subsystem is required to be stable. These conditions are employed to
design stabilizing feedback controllers when the subsystems are affine in
control. The analysis is carried out with the aid of multiple Lyapunov-like
functions, and the analysis results together with universal formulae for
feedback stabilization of nonlinear systems constitute our primary tools for
control designComment: 22 pages. Submitte
Exercise Intensity as a Determinant of Exercise Induced Hypoalgesia
The purpose of this study was to examine pain perception during and following two separate 30-min bouts of exercise above and below the Lactate Threshold (LT). Pain Threshold (PT) and Pain Intensity (PI) were monitored during (15 and 30 min) and after exercise (15 and 30 min into recovery) using a Cold Pressor Test (CPT) and Visual Analog Scale (VAS) for pain of the non-dominant hand. Significant differences in PT scores were found both during and after exercise conditions. Post hoc analysis revealed significant differences in PT scores at 30 min of exercise (P=0.024, P=0.02) and 15 min of recovery (P=0.03, P=0.01) for exercise conditions above and below LT, respectively. No differences (P=0.05) in PT scores were found at any time point between exercise conditions. No differences were found in PI scores at any time point within each trial (P=0.05) as well as between exercise conditions (p=0.05). Based upon these data, the effects of moderate exercise on PT appear to be similar at exercise intensities just above and below LT. This may indicate that the requisite intensity needed to ellicit Exercise-Induced Hypoalgesia may be lower than previously reported. Because a hypoalgesic effect was not observed in either condition until 30 min of exercise had been completed, total exercise time may be an important factor in the augmentation of pain perception under these conditions
- …
