1,079 research outputs found
Investigating the roughness effect of biofouling on propeller performance
As a result of the increasing pressure being placed on the marine industry to address ship emissions, regulations to govern the fuel efficiency and efficient operation of ships in the form of the Energy Efficiency Design Index (EEDI) (IMO, 2014) and Energy Efficiency Operation Index (EEOI) (IMO, 2009a) have recently come into force. These have been introduced alongside regulations concerning specific emissions requirements (UNFCCC). Attention has therefore been turned to all aspects of ship design and operation which have impact on their efficiency. In turn, this paper focuses on the effects of biofouling on propeller surfaces highlighting the benefits of reducing biofouling. This subject was the focus of a recently completed EU-Funded FP7 Project entitled FOUL-X-SPEL (2011). This paper investigates the detrimental impacts of biofouling on the performance of a real ship propeller using Computational Fluid Dynamics (CFD) simulations. Initially, the CFD approach used in this study was validated through CFD open-water tests of a propeller. A previously-developed CFD approach for approximating the surface roughness that results from biofouling has then been applied in order to predict the effects on propeller efficiency. The roughness effects of a typical coating and different fouling conditions on the propeller performance were therefore predicted for various advance coefficients Results indicated negative effects of biofouling on the propeller efficiency and the importance of the mitigation of such effects, supporting the importance of informing the industry about the impacts such that they are able to make informed decisions regarding regular propeller maintenance and cleanin
The role of the nature of the noise in the thermal conductance of mechanical systems
Focussing on a paradigmatic small system consisting of two coupled damped
oscillators, we survey the role of the L\'evy-It\^o nature of the noise in the
thermal conductance. For white noises, we prove that the L\'evy-It\^o
composition (Lebesgue measure) of the noise is irrelevant for the thermal
conductance of a non-equilibrium linearly coupled chain, which signals the
independence between mechanical and thermodynamical properties. On the other
hand, for the non-linearly coupled case, the two types of properties mix and
the explicit definition of the noise plays a central role.Comment: 9 pages, 2 figures. To be published in Physical Review
Conserved mass models with stickiness and chipping
We study a chipping model in one dimensional periodic lattice with continuous
mass, where a fixed fraction of the mass is chipped off from a site and
distributed randomly among the departure site and its neighbours; the remaining
mass sticks to the site. In the asymmetric version, the chipped off mass is
distributed among the site and the right neighbour, whereas in the symmetric
version the redistribution occurs among the two neighbours. The steady state
mass distribution of the model is obtained using a perturbation method for both
parallel and random sequential updates. In most cases, this perturbation theory
provides a steady state distribution with reasonable accuracy.Comment: 17 pages, 4 eps figure
Monte-Carlo simulation of neutron transmission through nanocomposite materials for neutron-optics applications
Nanocomposites enable us to tune parameters that are crucial for use of such
materials for neutron-optics applications such as diffraction gratings by
careful choice of properties such as species (isotope) and concentration of
contained nanoparticles. Nanocomposites for neutron optics have so far
successfully been deployed in protonated form, containing high amounts of H
atoms, which exhibit rather strong neutron absorption and incoherent
scattering. At a future stage of development, chemicals containing H could
be replaced by components with more favourable isotopes, such as H or
F. In this note, we present results of Monte-Carlo simulations of the
transmissivity of various nanocomposite materials for thermal and very-cold
neutron spectra. The results are compared to experimental transmission data.
Our simulation results for deuterated and fluorinated nanocomposite materials
predict a decrease of absorption- and scattering-losses down to about 2 % for
very-cold neutrons.Comment: submitted to NIM
Finite-size scaling for non-linear rheology of fluids confined in a small space
We perform molecular dynamics simulations in order to examine the rheological
transition of fluids confined in a small space. By performing finite-size
scaling analysis, we demonstrate that this rheological transition results from
the competition between the system size and the length scale of cooperative
particle motion.Comment: 4pages, 8 figure
Microstructural defect properties of InGaN/GaN blue light emitting diode structures
Cataloged from PDF version of article.In this paper, we study structural and morphological properties of metal-organic chemical vapour deposition-grown InGaN/GaN light emitting diode (LED) structures with different indium (In) content by means of high-resolution X-ray diffraction, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), photoluminescence (PL) and current-voltage characteristic (I-V). We have found out that the tilt and twist angles, lateral and vertical coherence lengths of mosaic blocks, grain size, screw and edge dislocation densities of GaN and InGaN layers, and surface roughness monotonically vary with In content. Mosaic defects obtained due to temperature using reciprocal lattice space map has revealed optimized growth temperature for active InGaN layer of MQW LED. It has been observed in this growth temperature that according to AFM result, LED structure has high crystal dimension, and is rough whereas according to PL and FTIR results, bandgap energy shifted to blue, and energy peak half-width decreased at high values. According to I-V measurements, it was observed that LED reacted against light at optimized temperature. In conclusion, we have seen that InGaN MQW structure's structural, optical and electrical results supported one another
A method for volume stabilization of single, dye-doped water microdroplets with femtoliter resolution
A self-control mechanism that stabilizes the size of Rhodamine B-doped water
microdroplets standing on a superhydrophobic surface is demonstrated. The
mechanism relies on the interplay between the condensation rate that was kept
constant and evaporation rate induced by laser excitation which critically
depends on the size of the microdroplets. The radii of individual water
microdroplets (>5 um) stayed within a few nanometers during long time periods
(up to 455 seconds). By blocking the laser excitation for 500 msec, the stable
volume of individual microdroplets was shown to change stepwise.Comment: to appear in the J. Op. Soc. Am.
Experimental determination of the roughness functions of marine coatings
The aim of this paper is to determine the roughness functions of different marine coatings, including two novel FOUL-X-SPEL paints and two existing commercial coatings, and two control surfaces, using the overall method of Granville (1987). An extensive series of towing tests of flat plates coated with different antifouling coatings was carried out at the Kelvin Hydrodynamics Laboratory (KHL) of the University of Strathclyde. The tests were designed to examine the as applied drag performances of FOUL-X-SPEL paints and compare them with two existing reference paints and two control surfaces. The surface roughness amplitude parameters of all of the test surfaces were measured using a hull roughness analyser. In total over 150 runs were carried out, including a series of repeat tests designed to quantify the uncertainty in the results. The drag coefficients and roughness function values of each surface were evaluated along with the uncertainty limits
Surface Roughness and Effective Stick-Slip Motion
The effect of random surface roughness on hydrodynamics of viscous
incompressible liquid is discussed. Roughness-driven contributions to
hydrodynamic flows, energy dissipation, and friction force are calculated in a
wide range of parameters. When the hydrodynamic decay length (the viscous wave
penetration depth) is larger than the size of random surface inhomogeneities,
it is possible to replace a random rough surface by effective stick-slip
boundary conditions on a flat surface with two constants: the stick-slip length
and the renormalization of viscosity near the boundary. The stick-slip length
and the renormalization coefficient are expressed explicitly via the
correlation function of random surface inhomogeneities. The effective
stick-slip length is always negative signifying the effective slow-down of the
hydrodynamic flows by the rough surface (stick rather than slip motion). A
simple hydrodynamic model is presented as an illustration of these general
hydrodynamic results. The effective boundary parameters are analyzed
numerically for Gaussian, power-law and exponentially decaying correlators with
various indices. The maximum on the frequency dependence of the dissipation
allows one to extract the correlation radius (characteristic size) of the
surface inhomogeneities directly from, for example, experiments with torsional
quartz oscillators.Comment: RevTeX4, 14 pages, 3 figure
Recommended from our members
Factors Influencing Optical Coherence Tomography Peripapillary Choroidal Thickness: A Multicenter Study.
Purpose:To quantify peripapillary choroidal thickness (PCT) and the factors that influence it in healthy participants who represent the racial and ethnic composition of the U.S. population. Methods:A total of 362 healthy participants underwent optical coherence tomography (OCT) enhanced depth imaging of the optic nerve head with a 24 radial B-scan pattern aligned to the fovea to Bruch's membrane opening axis. Bruch's membrane, anterior scleral canal opening (ASCO), and the anterior scleral surface were manually segmented. PCT was measured at 100, 300, 500, 700, 900, and 1100 μm from the ASCO globally and within 12 clock-hour sectors. The effects of age, axial length, intraocular pressure, ethnicity, sex, sector, and ASCO area on PCT were assessed by ANOVA and univariable and multivariable regressions. Results:Globally, PCT was thicker further from the ASCO border and thinner with older age, longer axial length, larger ASCO area, European descent, and female sex. Among these effectors, age and axial length explained the greatest proportion of variance. The rate of age-related decline increased further from the ASCO border. Sectorally, the inferior-temporal sectors were thinnest (10.7%-20.0% thinner than the thickest sector) and demonstrated a higher rate of age-related loss (from 15.6% to 20.7% faster) at each ASCO distance. Conclusions:In healthy eyes, PCT was thinnest in the inferior temporal sectors and thinner PCT was associated with older age, European descent, longer axial length, larger ASCO area, and female sex. Among these associations, age had the strongest influence, and its effect was greatest within the inferior temporal sectors
- …
