170 research outputs found

    Microwave-mediated heat transport through a quantum dot

    Full text link
    The thermoelectric effect in a quantum dot (QD) attached to two leads in the presence of microwave fields is studied by using the Keldysh nonequilibrium Green function technique. When the microwave is applied only on the QD and in the linear-response regime, the main peaks in the thermoelectric figure of merit and the thermopower are found to decrease, with the emergence of a set of photon-induced peaks. Under this condition the microwave field can not generate heat current or electrical bias voltage. Surprisingly, when the microwave field is applied only to one (bright) lead and not to the other (dark) lead or the QD, heat flows mostly from the dark to the bright lead, almost irrespectively to the direction of the thermal gradient. We attribute this effect to microwave-induced opening of additional transport channels below the Fermi energy. The microwave field can change both the magnitude and the sign of the electrical bias voltage induced by the temperature gradient.Comment: 5 figur

    Charge density wave in hidden order state of URu2_2Si2_2

    Full text link
    We argue that the hidden order state in URu2_2Si2_2 will induce a charge density wave. The modulation vector of the charge density wave will be twice that of the hidden order state, QCDW=2QHOQ_{CDW} = 2Q_{HO}. To illustrate how the charge density wave arises we use a Ginzburg-Landau theory that contains a coupling of the charge density wave amplitude to the square of the HO order parameter ΔHO\Delta_{HO}. This simple analysis allows us to predict the intensity and temperature dependence of the charge density wave order parameter in terms of the susceptibilities and coupling constants used in the Ginzburg-Landau analysis.Comment: 8 pages, 4 figure

    Tunneling into clean Heavy Fermion Compounds: Origin of the Fano Lineshape

    Full text link
    Recently observed tunneling spectra on clean heavy fermion compounds show a lattice periodic Fano lineshape similar to what is observed in the case of tunneling to a Kondo ion adsorbed at the surface. We show that the translation symmetry of a clean surface in the case of \emph{weakly correlated} metals leads to a tunneling spectrum given by the superposition of the local weighted density of states of all energy bands involved, which does not have a Fano lineshape. In particular the spectrum will show any hybridization gap present in the band structure. By contrast, in a \emph{strongly correlated} heavy fermion metal the heavy quasiparticle states will be broadened by interaction effects. The broadening grows as one moves away from the Fermi surface, up to a value of the order of TKT_K, the Kondo scale. We show that the hybridization gap is completely filled in this way, and an ideal Fano lineshape of width TKT_K results, similar to the impurity case. We also discuss the possible influence of the tunneling tip on the surface, in (i) leading to additional broadening of the Fano line, and (ii) enhancing the hybridization locally, hence adding to the impurity type behavior. The latter effects depend on the tip-surface distance.Comment: 4+ pages, 2 fig

    Reconstructing Fourier's law from disorder in quantum wires

    Full text link
    The theory of open quantum systems is used to study the local temperature and heat currents in metallic nanowires connected to leads at different temperatures. We show that for ballistic wires the local temperature is almost uniform along the wire and Fourier's law is invalid. By gradually increasing disorder, a uniform temperature gradient ensues inside the wire and the thermal current linearly relates to this local temperature gradient, in agreement with Fourier's law. Finally, we demonstrate that while disorder is responsible for the onset of Fourier's law, the non-equilibrium energy distribution function is determined solely by the heat baths

    Fourier's Law: insight from a simple derivation

    Full text link
    The onset of Fourier's law in a one-dimensional quantum system is addressed via a simple model of weakly coupled quantum systems in contact with thermal baths at their edges. Using analytical arguments we show that the crossover from the ballistic (invalid Fourier's law) to diffusive (valid Fourier's law) regimes is characterized by a thermal length-scale, which is directly related to the profile of the local temperature. In the same vein, dephasing is shown to give rise to a classical Fourier's law, similarly to the onset of Ohm's law in mesoscopic conductors.Comment: 4+ pages, references and discussions adde

    Spin-dependent thermoelectric transport through double quantum dots

    Full text link
    We study thermoelectric transport through double quantum dots system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green function in the linear response regime. It is found that the thermoelectric coefficients are strongly dependent on the splitting of interdot coupling, the relative magnetic configurations and the spin polarization of leads. In particular, the thermoelectric efficiency can achieve considerable value in parallel configuration when the effective interdot coupling and tunnel coupling between QDs and the leads for spin-down electrons are small. Moreover, the thermoelectric efficiency increases with the intradot Coulomb interactions increasing and can reach very high value at an appropriate temperature. In the presence of the magnetic field, the spin accumulation in leads strongly suppresses the thermoelectric efficiency and a pure spin thermopower can be obtained.Comment: 5 figure

    Fourier's Law: insight from a simple derivation

    Full text link
    The onset of Fourier's law in a one-dimensional quantum system is addressed via a simple model of weakly coupled quantum systems in contact with thermal baths at their edges. Using analytical arguments we show that the crossover from the ballistic (invalid Fourier's law) to diffusive (valid Fourier's law) regimes is characterized by a thermal length-scale, which is directly related to the profile of the local temperature. In the same vein, dephasing is shown to give rise to a classical Fourier's law, similarly to the onset of Ohm's law in mesoscopic conductors.Comment: 4+ pages, references and discussions adde

    Efficiency of Energy Conversion in Thermoelectric Nanojunctions

    Full text link
    Using first-principles approaches, this study investigated the efficiency of energy conversion in nanojunctions, described by the thermoelectric figure of merit ZTZT. We obtained the qualitative and quantitative descriptions for the dependence of ZTZT on temperatures and lengths. A characteristic temperature: T0=β/γ(l)T_{0}= \sqrt{\beta/\gamma(l)} was observed. When TT0T\ll T_{0}, ZTT2ZT\propto T^{2}. When TT0T\gg T_{0}, ZTZT tends to a saturation value. The dependence of ZTZT on the wire length for the metallic atomic chains is opposite to that for the insulating molecules: for aluminum atomic (conducting) wires, the saturation value of ZTZT increases as the length increases; while for alkanethiol (insulating) chains, the saturation value of ZTZT decreases as the length increases. ZTZT can also be enhanced by choosing low-elasticity bridging materials or creating poor thermal contacts in nanojunctions. The results of this study may be of interest to research attempting to increase the efficiency of energy conversion in nano thermoelectric devices.Comment: 2 figure
    corecore