850 research outputs found
Holographic Bosonic Technicolor
We consider a technicolor model in which the expectation value of an
additional, possibly composite, scalar field is responsible for the generation
of fermion masses. We define the dynamics of the strongly coupled sector by
constructing its holographic dual. Using the AdS/CFT correspondence, we study
the S parameter and the phenomenology of the light technihadrons. We find that
the S parameter is small over a significant region of the model's parameter
space. The particle spectrum is distinctive and includes a nonstandard Higgs
boson as well as heavier hadronic resonances. Technihadron masses and decay
rates are calculated holographically, as a function of the model's parameters.Comment: 20 Pages, 4 eps figures, REVTex. Minor corrections and comments adde
Virtual Compton Scattering off a Spinless Target in AdS/QCD
We study the doubly virtual Compton scattering off a spinless target
within the Anti-de Sitter(AdS)/QCD formalism. We find
that the general structure allowed by the Lorentz invariance and gauge
invariance of the Compton amplitude is not easily reproduced with the standard
recipes of the AdS/QCD correspondence. In the soft-photon regime, where the
semi-classical approximation is supposed to apply best, we show that the
measurements of the electric and magnetic polarizabilities of a target like the
charged pion in real Compton scattering, can already serve as stringent tests.Comment: 21 pages, version to be published in JHEP
Self-bound dense objects in holographic QCD
We study a self-bound dense object in the hard wall model. We consider a
spherically symmetric dense object which is characterized by its radial density
distribution and non-uniform but spherically symmetric chiral condensate. For
this we analytically solve the partial differential equations in the hard wall
model and read off the radial coordinate dependence of the density and chiral
condensate according to the AdS/CFT correspondence. We then attempt to describe
nucleon density profiles of a few nuclei within our framework and observe that
the confinement scale changes from a free nucleon to a nucleus. We briefly
discuss how to include the effect of higher dimensional operator into our
study. We finally comment on possible extensions of our work.Comment: 17 pages, 5 figures, figures replaced, minor revision, to appear in
JHE
Holographic Hadrons in a Confining Finite Density Medium
We study a sector of the hadron spectrum in the presence of finite baryon
density. We use a non-supersymmetric gravity dual to a confining guage theory
which exhibits a running dilaton. The interaction of mesons with the finite
density medium is encoded in the dual theory by a force balancing between
flavor D7-branes and a baryon vertex provided by a wrapped D5-brane. When the
current quark mass m_q is sufficiently large, the meson mass reduces,
exhibiting an interesting spectral flow as we increase the baryon density while
it has a more complicated behaviour for very small m_q.Comment: 34 pages, 20 figures, errors for some figures are fixe
Redefining genomic privacy: trust and empowerment
Fulfilling the promise of the genetic revolution requires the analysis of large datasets containing information from thousands to millions of participants. However, sharing human genomic data requires protecting subjects from potential harm. Current models rely on de-identification techniques in which privacy versus data utility becomes a zero-sum game. Instead, we propose the use of trust-enabling techniques to create a solution in which researchers and participants both win. To do so we introduce three principles that facilitate trust in genetic research and outline one possible framework built upon those principles. Our hope is that such trust-centric frameworks provide a sustainable solution that reconciles genetic privacy with data sharing and facilitates genetic research
Holographic two dimensional QCD and Chern-Simons term
We present a holographic realization of large Nc massless QCD in two
dimensions using a D2/D8 brane construction. The flavor axial anomaly is dual
to a three dimensional Chern-Simons term which turns out to be of leading
order, and it affects the meson spectrum and holographic renormalization in
crucial ways. The massless flavor bosons that exist in the spectrum are found
to decouple from the heavier mesons, in agreement with the general lore of
non-Abelian bosonization. We also show that an external dynamical photon
acquires a mass through the three dimensional Chern-Simons term as expected
from the Schwinger mechanism. Massless two dimensional QCD at large Nc exhibits
anti-vector-meson dominance due to the axial anomaly.Comment: 22 page
Matrix Models, Monopoles and Modified Moduli
Motivated by the Dijkgraaf-Vafa correspondence, we consider the matrix model
duals of N=1 supersymmetric SU(Nc) gauge theories with Nf flavors. We
demonstrate via the matrix model solutions a relation between vacua of theories
with different numbers of colors and flavors. This relation is due to an N=2
nonrenormalization theorem which is inherited by these N=1 theories.
Specializing to the case Nf=Nc, the simplest theory containing baryons, we
demonstrate that the explicit matrix model predictions for the locations on the
Coulomb branch at which monopoles condense are consistent with the quantum
modified constraints on the moduli in the theory. The matrix model solutions
include the case that baryons obtain vacuum expectation values. In specific
cases we check explicitly that these results are also consistent with the
factorization of corresponding Seiberg-Witten curves. Certain results are
easily understood in terms of M5-brane constructions of these gauge theories.Comment: 27 pages, LaTeX, 2 figure
The Baryonic Phase in Holographic Descriptions of the QCD Phase Diagram
We study holographic models of the QCD temperature-chemical potential phase
diagram based on the D3/D7 system with chiral symmetry breaking. The baryonic
phase may be included through linked D5-D7 systems. In a previous analysis of a
model with a running gauge coupling a baryonic phase was shown to exist to
arbitrarily large chemical potential. Here we explore this phase in a more
generic phenomenological setting with a step function dilaton profile. The
change in dilaton generates a linear confining potential and opposes
the screening effect of temperature. We show that the persistence of the
baryonic phase depends on the step size and that QCD-like phase diagrams can be
described. The baryonic phase's existence is qualitatively linked to the
existence of confinement in Wilson loop computations in the background.Comment: 21 pages, 7 figure
High-density information storage in an absolutely defined aperiodic sequence of monodisperse copolyester
Synthesis of a polymer composed of a large discrete number of chemically distinct monomers in an absolutely defined aperiodic sequence remains a challenge in polymer chemistry. The synthesis has largely been limited to oligomers having a limited number of repeating units due to the difficulties associated with the step-by-step addition of individual monomers to achieve high molecular weights. Here we report the copolymers of ??-hydroxy acids, poly(phenyllactic-co-lactic acid) (PcL) built via the cross-convergent method from four dyads of monomers as constituent units. Our proposed method allows scalable synthesis of sequence-defined PcL in a minimal number of coupling steps from reagents in stoichiometric amounts. Digital information can be stored in an aperiodic sequence of PcL, which can be fully retrieved as binary code by mass spectrometry sequencing. The information storage density (bit/Da) of PcL is 50% higher than DNA, and the storage capacity of PcL can also be increased by adjusting the molecular weight (~38???kDa)
- …
