6,766 research outputs found
Evaluation of ERTS-1 imagery for geological sensing over the diverse geological terrains of New York State
Film positives of ERTS-1 imagery, both as received from NASA and photographically reprocessed, are analyzed by conventional and color additive viewing methods. The imagery reveals bedrock and surficial geological information at various scales. Features which can be identified to varying degrees include boundaries between major tectonic provinces, lithological contacts, foliation trends within massive gneisses, faults, and topographic lineaments. In the present imagery the greatest amount of spectral geology is displayed in the Adirondack region where bedrock geology is strongly linked to topography. Within this basement complex, the most prominantly displayed features are numerous north-northeast trending faults and topographic lineaments, and arcuate east-west valleys developed in some of the weaker metasedimentary rocks. The majority of the faults and lineaments shown on the geologic Map of New York at 1:250,000 appear in the ERTS imagery
Analysis of ERTS-1 linear features in New York State
The author has identified the following significant results. All ERTS-1 linears confirmed to date have topographic expression although they may appear as featureless tonal linears on the imagery. A bias is unavoidably introduced against any linears which may parallel raster lines, lithological trends, or the azimuth of solar illumination. Ground study of ERTS-1 topographic lineaments in the Adirondacks indicates: outcrops along linears are even more rare than expected, fault breccias are found along some NNE lineaments, chloritization and slickensiding without brecciation characterize one EW lineament whereas closely-spaced jointing plus a zone of plastic shear define another. Field work in the Catskills suggests that the prominent new NNE lineaments may be surface manifestations of normal faulting in the basement, and that it may become possible to map major joint sets over extensive plateau regions directly on the imagery. Fall and winter images each display some unique linears, and long linears on the fall image commonly appear as aligned segments on the winter scene. A computer-processed color composite image permitted the extraction or additional information on the shaded side of mountains
Evaluation of ERTS imagery for spectral geological mapping in diverse terranes of New York State
Linear anomalies dominate the new geological information derived from ERTS-1 imagery, total lengths now exceeding 6000 km. Experimentation with a variety of viewing techniques suggests that conventional photogeologic analyses of band 7 results in the location of more than 97 percent of all linears found. The maxima on rose diagrams for ERTS-1 anomalies correspond well with those for mapped faults and topographic lineaments, despite a difference in relative magnitudes of maxima thought due to solar illumination direction. A multiscale analysis of linears showed that single topographic linears at 1:2,500,000 became segmented at 1:1,000,000, aligned zones of shorter parallel, en echelon, or conjugate linears at 1:500,000, and still shorter linears lacking obvious alignment at 1:250,000. Visible glacial features include individual drumlins, best seen in winter imagery, drumlinoids, eskers, ice-marginal drainage channels, glacial lake shorelines and sand plains, and end moraines
Assessment of ERTS-1 imagery as a tool for regional geological analysis in New York State
The author has identified the following significant results. Linear anomalies dominate the new geological information derived from ERTS-1 imagery, total lengths now exceeding 26,500 km. Maxima on rose diagrams for ERTS-1 anomalies correspond well with those for mapped faults and topographic lineaments. Multi-scale analysis of linears shows that single topographic linears at 1:2,500,000 may become dashed linears at 1:1,000,000 aligned zones of shorter parallel, en echelon, or conjugate linears at 1:5000,000, and shorter linears lacking any conspicuous zonal alignment at 1:250,000. Field work in the Catskills suggests that the prominent new NNE lineaments may be surface manifestations of dip slip faulting in the basement, and that it may become possible to map major joint sets over extensive plateau regions directly on the imagery. Most circular features found were explained away by U-2 airfoto analysis but several remain as anomalies. Visible glacial features include individual drumlins, drumlinoids, eskers, ice-marginal drainage channels, glacial lake shorelines, sand plains, and end moraines
1/f spectrum and memory function analysis of solvation dynamics in a room-temperature ionic liquid
To understand the non-exponential relaxation associated with solvation
dynamics in the ionic liquid 1-ethyl-3-methylimidazolium hexafluorophosphate,
we study power spectra of the fluctuating Franck-Condon energy gap of a
diatomic probe solute via molecular dynamics simulations. Results show 1/f
dependence in a wide frequency range over 2 to 3 decades, indicating
distributed relaxation times. We analyze the memory function and solvation time
in the framework of the generalized Langevin equation using a simple model
description for the power spectrum. It is found that the crossover frequency
toward the white noise plateau is directly related to the time scale for the
memory function and thus the solvation time. Specifically, the low crossover
frequency observed in the ionic liquid leads to a slowly-decaying tail in its
memory function and long solvation time. By contrast, acetonitrile
characterized by a high crossover frequency and (near) absence of 1/f behavior
in its power spectra shows fast relaxation of the memory function and
single-exponential decay of solvation dynamics in the long-time regime.Comment: 10 pages, 4 figure
On the contrasting spin dynamics of , and near half filling
We present simple calculations which show that incommensurability upon doping
and the width of the magnetically ordered phase in Mott-Hubbard insulators
depend strongly on the location of the hole/electron pockets in the Brillouin
zone. For systems, we found the pockets at ,
in which case the corrections to the antiferromagnetic spin stiffness grow with
doping and destroy the commensurate antiferromagnetic ordering already at a
very small doping. On the other hand, in , the hole pockets are
located at and the symmetry related points, in which case the
corrections to the stiffness scale linearly with the density of carriers and do
not destroy commensurate spin ordering. For , systems the situation is
less certain, but our results favor hole pockets at . We also
discuss briefly the tendency towards phase separation.Comment: 18 pages, LaTe
An improved \eps expansion for three-dimensional turbulence: summation of nearest dimensional singularities
An improved \eps expansion in the -dimensional () stochastic
theory of turbulence is constructed by taking into account pole singularities
at in coefficients of the \eps expansion of universal quantities.
Effectiveness of the method is illustrated by a two-loop calculation of the
Kolmogorov constant in three dimensions.Comment: 4 page
Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles
We construct the hydrodynamic equations for {\em suspensions} of
self-propelled particles (SPPs) with spontaneous orientational order, and make
a number of striking, testable predictions:(i) SPP suspensions with the
symmetry of a true {\em nematic} are {\em always} absolutely unstable at long
wavelengths.(ii) SPP suspensions with {\em polar}, i.e., head-tail {\em
asymmetric}, order support novel propagating modes at long wavelengths,
coupling orientation, flow, and concentration. (iii) In a wavenumber regime
accessible only in low Reynolds number systems such as bacteria, polar-ordered
suspensions are invariably convectively unstable.(iv) The variance in the
number N of particles, divided by the mean , diverges as in
polar-ordered SPP suspensions.Comment: submitted to Phys Rev Let
Quark description of the Nambu-Goldstone bosons in the color-flavor locked phase
We investigate the color-singlet order parameters and the quark description
of the Nambu-Goldstone (NG) bosons in the color-flavor locked (CFL) phase. We
put emphasis on the NG boson (phason) called ``H'' associated with the
symmetry breaking. We qualitatively argue the nature of H as
the second sound in the hydrodynamic regime. We articulate, based on a diquark
picture, how the structural change of the condensates and the associated NG
bosons occurs continuously from hadronic to CFL quark matter if the
quark-hadron continuity is realized. We sharpen the qualitative difference
between the flavor octet pions and the singlet phason. We propose a conjecture
that superfluid H matter undergoes a crossover to a superconductor with
tightly-bound diquarks, and then a crossover to superconducting matter with
diquarks dissociated.Comment: 14 pages, 1 table, 1 figure and confusing statements are correcte
- …
