16,114 research outputs found

    Inconsistencies in Interpreting the Atmospheric Neutrino Anomaly

    Full text link
    We note a discrepancy between the value of R expected on the basis of the muon neutrino angular distribution and the value actually observed. The energy independence of RR leads to a fine tuning problem. This may be indicative of some unaccounted for new physics.Comment: 3 pages, 5 figure

    Results from K2K and status of T2K

    Full text link
    Results from the K2K experiment and status of the T2K experiment are reported.Comment: 9 pages, 6 figures. Talk at International Conference on New Trends in High-Energy Physics (Crimea2005), Yalta, Ukraine, September 10-17, 200

    Neutrino masses and mixing angles from leptoquark interactions

    Get PDF
    In this paper we show that the mixing between leptoquarks (LQ's) from different SU(2)lSU(2)_l multiplets can generate a non-trivial Majorana mass matrix for neutrinos through one loop self energy diagrams. Such mixing can arise from gauge invariant and renormalizable LQ-Higgs interaction terms after EW symmetry breaking. We use the experimental indication on neutrino oscillation to find constraints on specific combinations of LQ couplings to quark-lepton pairs and to the SM higgs boson. These constraints are compared with the ones from πeνˉe\pi\to e\bar {\nu}_e.Comment: The expressions for majorana mass matrix of neutrinos have been corrected so that they are symmetric. Final version to be published in Physical Review

    Analytic Calculation of Neutrino Mass Eigenvalues

    Full text link
    Implicaion of the neutrino oscillation search for the neutrino mass square difference and mixing are discussed. We have considered the effective majorana mass m_{ee}, related for \beta\beta_{0\nu}decay. We find limits for neutrino mass eigen value m_{i} in the different neutrino mass spectrum,which explain the different neutrino data.Comment: 10 page

    The MSW Effect in Quantum Field Theory

    Get PDF
    We show in detail the general relationship between the Schr\"{o}dinger equation approach to calculating the MSW effect and the quantum field theoretical S-matrix approach. We show the precise form a generic neutrino propagator must have to allow a physically meaningful ``oscillation probability'' to be decoupled from neutrino production fluxes and detection cross-sections, and explicitly list the conditions---not realized in cases of current experimental interest---in which the field theory approach would be useful.Comment: 20 page REVTeX file, submitted to Phys. Rev.

    Super-Kamiokande data and atmospheric neutrino decay

    Get PDF
    Neutrino decay has been proposed as a possible solution to the atmospheric neutrino anomaly, in the light of the recent data from the Super-Kamiokande experiment. We investigate this hypothesis by means of a quantitative analysis of the zenith angle distributions of neutrino events in Super-Kamiokande, including the latest (45 kTy) data. We find that the neutrino decay hypothesis fails to reproduce the observed distributions of muons.Comment: 6 pages (RevTeX) + 2 figures (Postscript

    Symplectic Symmetry of the Neutrino Mass and the See-Saw Mechanism

    Get PDF
    We investigate the algebraic structure of the most general neutrino mass Hamiltonian and place the see-saw mechanism in an algebraic framework. We show that this Hamiltonian can be written in terms of the generators of an Sp(4) algebra. The Pauli-Gursey transformation is an SU(2) rotation which is embedded in this Sp(4) group. This SU(2) also generates the see-saw mechanism.Comment: 11 pages, REVTE

    Searching for νμντ\nu_\mu \to \nu_\tau Oscillations with Extragalactic Neutrinos

    Full text link
    We propose a novel approach for studying νμντ\nu_\mu \to \nu_\tau oscillations with extragalactic neutrinos. Active Galactic Nuclei and Gamma Ray Bursts are believed to be sources of ultrahigh energy muon neutrinos. With distances of 100 Mpc or more, they provide an unusually long baseline for possible detection of νμντ\nu_\mu \to \nu_\tau with mixing parameters Δm2\Delta m^2 down to 101710^{-17}eV2^2, many orders of magnitude below the current accelerator experiments. By solving the coupled transport equations, we show that high-energy ντ\nu_\tau's, as they propagate through the earth, cascade down in energy, producing the enhancement of the incoming ντ\nu_\tau flux in the low energy region, in contrast to the high-energy νμ\nu_\mu's, which get absorbed. For an AGN quasar model we find the ντ\nu_\tau flux to be a factor of 2 to 2.5 larger than the incoming flux in the energy range between 10210^2 GeV and 10410^4 GeV, while for a GRB fireball model, the enhancement is 10%-27% in the same energy range and for zero nadir angle. This enhancement decreases with larger nadir angle, thus providing a novel way to search for ντ\nu_\tau appearance by measuring the angular dependence of the muons. To illustrate how the cascade effect and the ντ\nu_\tau final flux depend on the steepness of the incoming ντ\nu_\tau, we show the energy and angular distributions for several generic cases of the incoming tau neutrino flux, Fν0EnF_\nu^0 \sim E^{-n} for n=1,2 and 3.6. We show that for the incoming flux that is not too steep, the signal for the appearance of high-energy ντ\nu_\tau is the enhanced production of lower energy μ\mu and their distinctive angular dependence, due to the contribution from the τ\tau decay into μ\mu just below the detector.Comment: 11 pages, including 4 color figure
    corecore