1,140 research outputs found
NASSAM: a server to search for and annotate tertiary interactions and motifs in three-dimensional structures of complex RNA molecules
Similarities in the 3D patterns of RNA base interactions or arrangements can provide insights into their functions and roles in stabilization of the RNA 3D structure. Nucleic Acids Search for Substructures and Motifs (NASSAM) is a graph theoretical program that can search for 3D patterns of base arrangements by representing the bases as pseudo-atoms. The geometric relationship of the pseudo-atoms to each other as a pattern can be represented as a labeled graph where the pseudo-atoms are the graph's nodes while the edges are the inter-pseudo-atomic distances. The input files for NASSAM are PDB formatted 3D coordinates. This web server can be used to identify matches of base arrangement patterns in a query structure to annotated patterns that have been reported in the literature or that have possible functional and structural stabilization implications. The NASSAM program is freely accessible without any login requirement at http://mfrlab.org/grafss/nassam/
An aperture masking mode for the MICADO instrument
MICADO is a near-IR camera for the Europea ELT, featuring an extended field
(75" diameter) for imaging, and also spectrographic and high contrast imaging
capabilities. It has been chosen by ESO as one of the two first-light
instruments. Although it is ultimately aimed at being fed by the MCAO module
called MAORY, MICADO will come with an internal SCAO system that will be
complementary to it and will deliver a high performance on axis correction,
suitable for coronagraphic and pupil masking applications. The basis of the
pupil masking approach is to ensure the stability of the optical transfer
function, even in the case of residual errors after AO correction (due to non
common path errors and quasi-static aberrations). Preliminary designs of pupil
masks are presented. Trade-offs and technical choices, especially regarding
redundancy and pupil tracking, are explained.Comment: SPIE 2014 Proceeding -- Montrea
Detection of the Sgr A* activity at 3.8 and 4.8 microns with NACO
L'-band (lambda=3.8 microns) and M'-band (lambda=4.8 microns) observations of
the Galactic Center region, performed in 2003 at VLT (ESO) with the adaptive
optics imager NACO, have lead to the detection of an infrared counterpart of
the radio source Sgr A* at both wavelengths. The measured fluxes confirm that
the Sgr A* infrared spectrum is dominated by the synchrotron emission of
nonthermal electrons. The infrared counterpart exhibits no significant short
term variability but demonstrates flux variations on daily and yearly scales.
The observed emission arises away from the position of the dynamical center of
the S2 orbit and would then not originate from the closest regions of the black
hole.Comment: 5 pages, 3 figures, accepted in Astronomy & Astrophysic
A word classification of the L.A. Lurie et al primary word list
Thesis (Ed.M.)--Boston Universit
GRAVITY: getting to the event horizon of Sgr A*
We present the second-generation VLTI instrument GRAVITY, which currently is
in the preliminary design phase. GRAVITY is specifically designed to observe
highly relativistic motions of matter close to the event horizon of Sgr A*, the
massive black hole at center of the Milky Way. We have identified the key
design features needed to achieve this goal and present the resulting
instrument concept. It includes an integrated optics, 4-telescope, dual feed
beam combiner operated in a cryogenic vessel; near infrared wavefront sensing
adaptive optics; fringe tracking on secondary sources within the field of view
of the VLTI and a novel metrology concept. Simulations show that the planned
design matches the scientific needs; in particular that 10 microarcsecond
astrometry is feasible for a source with a magnitude of K=15 like Sgr A*, given
the availability of suitable phase reference sources.Comment: 13 pages, 11 figures, to appear in the conference proceedings of SPIE
Astronomical Instrumentation, 23-28 June 2008, Marseille, Franc
CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.
Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases
VLT/NACO infrared adaptive optics images of small scale structures in OMC1
International audienceNear-infrared observations of line emission from excited H 2 and in the continuum are reported in the direction of the Orion molecular cloud OMC1 , using the European Southern Observatory Very Large Telescope UT4 , equipped with the NAOS adaptive optics system on the CONICA infrared array camera. Spatial resolution has been achieved at close to the diffraction limit of the telescope (0. 08 −0. 12) and images show a wealth of morphological detail. Structure is not fractal but shows two preferred scale sizes of 2. (1100 AU) and 1. 2 (540 AU) , where the larger scale may be associated with star formation. Key words. ISM : individual objects : OMC1 – ISM : circumstellar matter – ISM : kinematics and dynamics – ISM : molecules – infrared : IS
On the accuracy of PLIF measurements in slender plumes
The purpose of this article was to assess the measurement uncertainty of the planar laser-induced fluorescence (PLIF) method and, as much as possible, to devise corrections for predictable biases. More specifically, we considered the measurement of concentration maps in cross sections parallel to and normal to the axis of a slender plume containing Rhodamine 6G as a passive scalar tracer and transported by a turbulent shear flow. In addition to previously examined sources of error related to PLIF, we also investigated several unexplored ones. First, we demonstrated that errors would arise if the laser sheet thickness was comparable to or larger than the thickness of the instantaneous plume. We then investigated the effect of secondary fluorescence, which was attributed to absorption and re-emission of primary fluorescence by dye both within and outside the laser sheet. We found that, if uncorrected, this effect would contaminate the calibration as well as the instantaneous concentration measurements of the plume, and proposed methods for the correction of these errors and for identifying the instantaneous boundaries of the in-sheet dye regions
Magnetic Field Amplification in Galaxy Clusters and its Simulation
We review the present theoretical and numerical understanding of magnetic
field amplification in cosmic large-scale structure, on length scales of galaxy
clusters and beyond. Structure formation drives compression and turbulence,
which amplify tiny magnetic seed fields to the microGauss values that are
observed in the intracluster medium. This process is intimately connected to
the properties of turbulence and the microphysics of the intra-cluster medium.
Additional roles are played by merger induced shocks that sweep through the
intra-cluster medium and motions induced by sloshing cool cores. The accurate
simulation of magnetic field amplification in clusters still poses a serious
challenge for simulations of cosmological structure formation. We review the
current literature on cosmological simulations that include magnetic fields and
outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
[Editorial] Accounting scholarship and management by numbers
There is a plethora of indices ranking universities, departments, and individual researchers based on a variety of indices. These invariably include a measurement of research, usually based on a combination of quantity and quality of journal publications. Informal discussions with accounting researchers invariably turns to the question of journal rankings and performance management indicators. Why is this so
- …
