205 research outputs found

    Poincare Polynomials and Level Rank Dualities in the N=2N=2 Coset Construction

    Full text link
    We review the coset construction of conformal field theories; the emphasis is on the construction of the Hilbert spaces for these models, especially if fixed points occur. This is applied to the N=2N=2 superconformal cosets constructed by Kazama and Suzuki. To calculate heterotic string spectra we reformulate the Gepner con- struction in terms of simple currents and introduce the so-called extended Poincar\'e polynomial. We finally comment on the various equivalences arising between models of this class, which can be expressed as level rank dualities. (Invited talk given at the III. International Conference on Mathematical Physics, String Theory and Quantum Gravity, Alushta, Ukraine, June 1993. To appear in Theor. Math. Phys.)Comment: 14 pages in LaTeX, HD-THEP-93-4

    The spectrum of states with one current acting on the adjoint vacuum of massless QCD2

    Full text link
    We consider a ``one current'' state, which is obtained by the application of a color current on the ``adjoint'' vacuum. This is done in QCD2QCD_2, with the underlying quarks in the fundamental representation. The quarks are taken to be massless, in which case the theory on the light-front can be ``currentized'', namely, formulated in terms of currents only. The adjoint vacuum is shown to be the application of a current derivative, at zero momentum, on the singlet vacuum. We apply the operator M2=2P+PM^2=2P^+P^- on these states and find that in general they are not eigenstates of M2M^2 apart from the large NfN_f limit. Problems with infra-red regularizations are pointed out. We discuss the fermionic structure of these states.Comment: 18 pages, no figures. v2: minor corrections. v3: added some clarifications and remarks, mainly on the contribution of zero modes. Typos corrected, references added. To appear in Nuclear Physics

    Symmetries between Untwisted and Twisted Strings on Asymmetric Orbifolds

    Full text link
    We study symmetries between untwisted and twisted strings on asymmetric orbifolds. We present a list of asymmetric orbifold models to possess intertwining currents which convert untwisted string states to twisted ones, and vice versa. We also present a list of heterotic strings on asymmetric orbifolds with supersymmetry between untwisted and twisted string states. Some of properties inherent in asymmetric orbifolds, which are not shared by symmetric orbifolds, are pointed out.Comment: Plain Tex, 35 pages, NBI-HE-92-34, KOBE-92-0

    Current-Current Deformations of Conformal Field Theories, and WZW Models

    Full text link
    Moduli spaces of conformal field theories corresponding to current-current deformations are discussed. For WZW models, CFT and sigma model considerations are compared. It is shown that current-current deformed WZW models have WZW-like sigma model descriptions with non-bi-invariant metrics, additional B-fields and a non-trivial dilaton.Comment: 30 pages, latex, v2: remarks and references adde

    On the complete classification of the unitary N=2 minimal superconformal field theories

    Get PDF
    Aiming at a complete classification of unitary N=2 minimal models (where the assumption of space-time supersymmetry has been dropped), it is shown that each modular invariant candidate of a partition function for such a theory is indeed the partition function of a minimal model. A family of models constructed via orbifoldings of either the diagonal model or of the space-time supersymmetric exceptional models demonstrates that there exists a unitary N=2 minimal model for every one of the allowed partition functions in the list obtained from Gannon's work. Kreuzer and Schellekens' conjecture that all simple current invariants can be obtained as orbifolds of the diagonal model, even when the extra assumption of higher-genus modular invariance is dropped, is confirmed in the case of the unitary N=2 minimal models by simple counting arguments.Comment: 53 pages; Latex; minor changes in v2: intro expanded, references added, typos corrected, footnote added on p31; renumbering of sections; main theorem reformulated for clarity, but contents unchanged. Minor revisions in v3: typos corrected, footnotes 5, 6 added, lemma 1 and section 3.3.2 rewritten for greater generality, section 3.3 review removed. To appear in Comm. Math. Phy

    The partition function of the supersymmetric two-dimensional black hole and little string theory

    Full text link
    We compute the partition function of the supersymmetric two-dimensional Euclidean black hole geometry described by the SL(2,R)/U(1) superconformal field theory. We decompose the result in terms of characters of the N=2 superconformal symmetry. We point out puzzling sectors of states besides finding expected discrete and continuous contributions to the partition function. By adding an N=2 minimal model factor of the correct central charge and projecting on integral N=2 charges we compute the partition function of the background dual to little string theory in a double scaling limit. We show the precise correspondence between this theory and the background for NS5-branes on a circle, due to an exact description of the background as a null gauging of SL(2,R) x SU(2). Finally, we discuss the interplay between GSO projection and target space geometry.Comment: JHEP class, 35 pages, no figures; v2: minor changes, typos corrected, published versio

    SL(2,R)/U(1) Supercoset and Elliptic Genera of Non-compact Calabi-Yau Manifolds

    Full text link
    We first discuss the relationship between the SL(2;R)/U(1) supercoset and N=2 Liouville theory and make a precise correspondence between their representations. We shall show that the discrete unitary representations of SL(2;R)/U(1) theory correspond exactly to those massless representations of N=2 Liouville theory which are closed under modular transformations and studied in our previous work hep-th/0311141. It is known that toroidal partition functions of SL(2;R)/U(1) theory (2D Black Hole) contain two parts, continuous and discrete representations. The contribution of continuous representations is proportional to the space-time volume and is divergent in the infinite-volume limit while the part of discrete representations is volume-independent. In order to see clearly the contribution of discrete representations we consider elliptic genus which projects out the contributions of continuous representations: making use of the SL(2;R)/U(1), we compute elliptic genera for various non-compact space-times such as the conifold, ALE spaces, Calabi-Yau 3-folds with A_n singularities etc. We find that these elliptic genera in general have a complex modular property and are not Jacobi forms as opposed to the cases of compact Calabi-Yau manifolds.Comment: 39 pages, no figure; v2 references added, minor corrections; v3 typos corrected, to appear in JHEP; v4 typos corrected in eqs. (3.22) and (3.44

    Superstrings on NS5 backgrounds, deformed AdS3 and holography

    Full text link
    We study a non-standard decoupling limit of the D1/D5-brane system, which interpolates between the near-horizon geometry of the D1/D5 background and the near-horizon limit of the pure D5-brane geometry. The S-dual description of this background is actually an exactly solvable two-dimensional (worldsheet) conformal field theory: {null-deformed SL(2,R)} x SU(2) x T^4 or K3. This model is free of strong-coupling singularities. By a careful treatment of the SL(2,R), based on the better-understood SL(2,R) / U(1) coset, we obtain the full partition function for superstrings on SL(2,R) x SU(2) x K3. This allows us to compute the partition functions for the J^3 and J^2 current-current deformations, as well as the full line of supersymmetric null deformations, which links the SL(2,R) conformal field theory with linear dilaton theory. The holographic interpretation of this setup is a renormalization-group flow between the decoupled NS5-brane world-volume theory in the ultraviolet (Little String Theory), and the low-energy dynamics of super Yang--Mills string-like instantons in six dimensions.Comment: JHEP style, 59 pages, 1 figure; v2: minor changes, to appear in JHE

    Sigma models as perturbed conformal field theories

    Get PDF
    We show that two-dimensional sigma models are equivalent to certain perturbed conformal field theories. When the fields in the sigma model take values in a space G/H for a group G and a maximal subgroup H, the corresponding conformal field theory is the kk\to\infty limit of the coset model (G/H)k(G/H)_k, and the perturbation is related to the current of G. This correspondence allows us for example to find the free energy for the "O(n)" (=O(n)/O(n-1)) sigma model at non-zero temperature. It also results in a new approach to the CP^{n} model.Comment: 4 pages. v2: corrects typos (including several in the published version

    Boundary states, matrix factorisations and correlation functions for the E-models

    Get PDF
    The open string spectra of the B-type D-branes of the N=2 E-models are calculated. Using these results we match the boundary states to the matrix factorisations of the corresponding Landau-Ginzburg models. The identification allows us to calculate specific terms in the effective brane superpotential of E_6 using conformal field theory methods, thereby enabling us to test results recently obtained in this context.Comment: 20 pages, no figure
    corecore