8,698 research outputs found

    Lasing in circuit quantum electrodynamics with strong noise

    Full text link
    We study a model which can describe a superconducting single electron transistor (SSET) or a double quantum dot coupled to transmission-line oscillator. In both cases the degree of freedom is given by a charged particle, which couples strongly to the electromagnetic environment or phonons. We consider the case where a lasing condition is established and study the dependence of the average photon number in the resonator on the spectral function of the electromagnetic environment. We focus on three important cases: a strongly coupled environment with a small cut-off frequency, a structured environment peaked at a specific frequency and 1/f-noise. We find that the electromagnetic environment can have a substantial impact on the photon creation. Resonance peaks are in general broadened and additional resonances can appear

    Electron transport through interacting quantum dots

    Full text link
    We present a detailed theoretical investigation of the effect of Coulomb interactions on electron transport through quantum dots and double barrier structures connected to a voltage source via an arbitrary linear impedance. Combining real time path integral techniques with the scattering matrix approach we derive the effective action and evaluate the current-voltage characteristics of quantum dots at sufficiently large conductances. Our analysis reveals a reach variety of different regimes which we specify in details for the case of chaotic quantum dots. At sufficiently low energies the interaction correction to the current depends logarithmically on temperature and voltage. We identify two different logarithmic regimes with the crossover between them occurring at energies of order of the inverse dwell time of electrons in the dot. We also analyze the frequency-dependent shot noise in chaotic quantum dots and elucidate its direct relation to interaction effects in mesoscopic electron transport.Comment: 21 pages, 4 figures. References added, discussion slightly extende

    Interaction-Induced Quantum Dephasing in Mesoscopic Rings

    Full text link
    Combining nonperturbative techniques with Monte Carlo simulations we demonstrate that quantum coherence effects for a particle on a ring are suppressed beyond a finite length LϕL_{\phi} even at zero temperature if the particle is coupled to a diffusive electron gas by means of long range Coulomb interaction. This length is consistent with LϕL_{\phi} derived from weak-localization-type of analysis.Comment: 4 revtex pages, 2 figure

    Statistics of voltage fluctuations in resistively shunted Josephson junctions

    Full text link
    The intrinsic nonlinearity of Josephson junctions converts Gaussian current noise in the input into non-Gaussian voltage noise in the output. For a resistively shunted Josephson junction with white input noise we determine numerically exactly the properties of the few lowest cumulants of the voltage fluctuations, and we derive analytical expressions for these cumulants in several important limits. The statistics of the voltage fluctuations is found to be Gaussian at bias currents well above the Josephson critical current, but Poissonian at currents below the critical value. In the transition region close to the critical current the higher-order cumulants oscillate and the voltage noise is strongly non-Gaussian. For coloured input noise we determine the third cumulant of the voltage.Comment: 9 pages, 5 figure

    Work fluctuation theorem for a classical circuit coupled to a quantum conductor

    Full text link
    We propose a setup for a quantitative test of the quantum fluctuation theorem. It consists of a quantum conductor, driven by an external voltage source, and a classical inductor-capacitor circuit. The work done on the system by the voltage source can be expressed by the classical degrees of freedom of the LC circuit, which are measurable by conventional techniques. In this way the circuit acts as a classical detector to perform measurements of the quantum conductor. We prove that this definition is consistent with the work fluctuation theorem. The system under consideration is effectively described by a Langevin equation with non-Gaussian white noise. Our analysis extends the proof of the fluctuation theorem to this situation.Comment: 8 pages, 3 figure

    Dephasing at Low Temperatures

    Full text link
    We discuss the significance and the calculation of dephasing at low temperatures. The particle is moving diffusively due to a static disorder configuration, while the interference between classical paths is suppressed due to the interaction with a dynamical environment. At high temperatures we may use the `white noise approximation' (WNA), while at low temperatures we distinguish the contribution of `zero point fluctuations' (ZPF) from the `thermal noise contribution' (TNC). We study the limitations of the above semiclassical approach and suggest the required modifications. In particular we find that the ZPF contribution becomes irrelevant for thermal motion.Comment: 4 pages, 1 figure, clearer presentatio

    Quantal Brownian Motion - Dephasing and Dissipation

    Full text link
    We analyze quantal Brownian motion in dd dimensions using the unified model for diffusion localization and dissipation, and Feynman-Vernon formalism. At high temperatures the propagator possess a Markovian property and we can write down an equivalent Master equation. Unlike the case of the Zwanzig-Caldeira-Leggett model, genuine quantum mechanical effects manifest themselves due to the disordered nature of the environment. Using Wigner picture of the dynamics we distinguish between two different mechanisms for destruction of coherence. The analysis of dephasing is extended to the low temperature regime by using a semiclassical strategy. Various results are derived for ballistic, chaotic, diffusive, both ergodic and non-ergodic motion. We also analyze loss of coherence at the limit of zero temperature and clarify the limitations of the semiclassical approach. The condition for having coherent effect due to scattering by low-frequency fluctuations is also pointed out. It is interesting that the dephasing rate can be either larger or smaller than the dissipation rate, depending on the physical circumstances.Comment: LaTex, 23 pages, 4 figures, published vesio

    Irreversibility on the Level of Single-Electron Tunneling

    Get PDF
    We present a low-temperature experimental test of the fluctuation theorem for electron transport through a double quantum dot. The rare entropy-consuming system trajectories are detected in the form of single charges flowing against the source-drain bias by using time-resolved charge detection with a quantum point contact. We find that these trajectories appear with a frequency that agrees with the theoretical predictions even under strong nonequilibrium conditions, when the finite bandwidth of the charge detection is taken into account
    corecore