118 research outputs found
Charge coupling in multi-stage laser wakefield acceleration
The multi-stage technique for laser driven acceleration of electrons become a
critical part of full-optical, jitter-free accelerators. Use of several
independent laser drivers and shorter length plasma targets allows the stable
and reproducible acceleration of electron bunches (or beam) in the GeV energies
with lower energy spreads. At the same time the charge coupling, necessary for
efficient acceleration in the consecutive acceleration stage(s), depends
collectively on the parameters of the injected electron beam, the booster
stage, and the non-linear transverse dynamics of the electron beam in the laser
pulse wake. An unmatched electron beam injected in the booster stage(s), and
its non-linear transverse evolution may result in perturbation and even
reduction of the field strength in the acceleration phase of the wakefield.
Analysis and characterization of charge coupling in multi-stage laser wakefield
acceleration (LWFA) become ultimately important. Here, we investigate two-stage
LWFA via fully relativistic multi-dimensional particle-in-cell simulations, and
underlying the most critical parameters, which affect the efficient coupling
and acceleration of the electron beam in the booster stage.Comment: 10 figure
Attentional Set-Shifting Deficit in Parkinson’s Disease Is Associated with Prefrontal Dysfunction: An FDG-PET Study
The attentional set-shifting deficit that has been observed in Parkinson’s disease (PD) has long been considered neuropsychological evidence of the involvement of meso-prefrontal and prefrontal-striatal circuits in cognitive flexibility. However, recent studies have suggested that non-dopaminergic, posterior cortical pathologies may also contribute to this deficit. Although several neuroimaging studies have addressed this issue, the results of these studies were confounded by the use of tasks that required other cognitive processes in addition to set-shifting, such as rule learning and working memory. In this study, we attempted to identify the neural correlates of the attentional set-shifting deficit in PD using a compound letter task and 18F-fluoro-deoxy-glucose (FDG) positron emission tomography during rest. Shift cost, which is a measure of attentional set-shifting ability, was significantly correlated with hypometabolism in the right dorsolateral prefrontal cortex, including the putative human frontal eye field. Our results provide direct evidence that dysfunction in the dorsolateral prefrontal cortex makes a primary contribution to the attentional set-shifting deficit that has been observed in PD patients
Do parkinsonian patients have trouble telling lies? The neurobiological basis of deceptive behaviour
Parkinson's disease is a common neurodegenerative disorder with both motor symptoms and cognitive deficits such as executive dysfunction. Over the past 100 years, a growing body of literature has suggested that patients with Parkinson's disease have characteristic personality traits such as industriousness, seriousness and inflexibility. They have also been described as ‘honest’, indicating that they have a tendency not to deceive others. However, these personality traits may actually be associated with dysfunction of specific brain regions affected by the disease. In the present study, we show that patients with Parkinson's disease are indeed ‘honest’, and that this personality trait might be derived from dysfunction of the prefrontal cortex. Using a novel cognitive task, we confirmed that patients with Parkinson's disease (n = 32) had difficulty making deceptive responses relative to healthy controls (n = 20). Also, using resting-state 18F-fluorodeoxyglucose PET, we showed that this difficulty was significantly correlated with prefrontal hypometabolism. Our results are the first to demonstrate that the ostensible honesty found in patients with Parkinson's disease has a neurobiological basis, and they provide direct neuropsychological evidence of the brain mechanisms crucial for human deceptive behaviour
EuPRAXIA - A compact, cost-efficient particle and radiation source
Plasma accelerators present one of the most suitable candidates for the development of more compact particle acceleration technologies, yet they still lag behind radiofrequency (RF)-based devices when it comes to beam quality, control, stability and power efficiency. The Horizon 2020-funded project EuPRAXIA ("European Plasma Research Accelerator with eXcellence In Applications") aims to overcome the first three of these hurdles by developing a conceptual design for a first international user facility based on plasma acceleration. In this paper we report on the main features, simulation studies and potential applications of this future research infrastructure
Erratum to: EuPRAXIA Conceptual Design Report – Eur. Phys. J. Special Topics 229, 3675-4284 (2020), https://doi.org/10.1140/epjst/e2020-000127-8
International audienceThe online version of the original article can be found at http://https://doi.org/10.1140/epjst/e2020-000127-8</A
Status of the Horizon 2020 EuPRAXIA conceptual design study
The Horizon 2020 project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction sites, one with a focus on beam-driven plasma acceleration (PWFA) and another site with a focus on laser-driven plasma acceleration (LWFA). User areas at both sites will provide access to free-electron laser pilot experiments, positron generation and acceleration, compact radiation sources, and test beams for high-energy physics detector development. Support centres in four different countries will complement the pan-European implementation of this infrastructure
Status of the Horizon 2020 EuPRAXIA conceptual design study
The Horizon 2020 project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction sites, one with a focus on beam-driven plasma acceleration (PWFA) and another site with a focus on laser-driven plasma acceleration (LWFA). User areas at both sites will provide access to free-electron laser pilot experiments, positron generation and acceleration, compact radiation sources, and test beams for high-energy physics detector development. Support centres in four different countries will complement the pan-European implementation of this infrastructure
- …
