1,371 research outputs found
Enhancement of superconductivity in NbN nanowires by negative electron-beam lithography with positive resist
We performed comparative experimental investigation of superconducting NbN
nanowires which were prepared by means of positive-and negative electron-beam
lithography with the same positive tone Poly-methyl-methacrylate (PMMA) resist.
We show that nanowires with a thickness 4.9 nm and widths less than 100 nm
demonstrate at 4.2 K higher critical temperature and higher density of critical
and retrapping currents when they are prepared by negative lithography. Also
the ratio of the experimental critical-current to the depairing critical
current is larger for nanowires prepared by negative lithography. We associate
the observed enhancement of superconducting properties with the difference in
the degree of damage that nanowire edges sustain in the lithographic process. A
whole range of advantages which is offered by the negative lithography with
positive PMMA resist ensures high potential of this technology for improving
performance metrics of superconducting nanowire singe-photon detectors
Diffusion Process in a Flow
We establish circumstances under which the dispersion of passive contaminants
in a forced, deterministic or random, flow can be consistently interpreted as a
Markovian diffusion process. In case of conservative forcing the repulsive case
only, with bounded from below, is
unquestionably admitted by the compatibility conditions. A class of diffusion
processes is exemplified, such that the attractive forcing is allowed as well,
due to an appropriate compensation coming from the "pressure" term. The
compressible Euler flows form their subclass, when regarded as stochastic
processes. We establish circumstances under which the dispersion of passive
contaminants in a forced, deterministic or random, flow can be consistently
interpreted as a Markovian diffusion process. In case of conservative forcing
the repulsive case only, with bounded
from below, is unquestionably admitted by the compatibility conditions. A class
of diffusion processes is exemplified, such that the attractive forcing is
allowed as well, due to an appropriate compensation coming from the "pressure"
term. The compressible Euler flows form their subclass, when regarded as
stochastic processes.Comment: 10 pages, Late
Optimisation of ITER Nb3Sn CICCs for coupling loss, transverse electromagnetic load and axial thermal contraction
The ITER cable-in-conduit conductors (CICCs) are built up from sub-cable
bundles, wound in different stages, which are twisted to counter coupling loss
caused by time-changing external magnet fields. The selection of the twist
pitch lengths has major implications for the performance of the cable in the
case of strain sensitive superconductors, i.e. Nb3Sn, as the electromagnetic
and thermal contraction loads are large but also for the heat load from the AC
coupling loss. Reduction of the transverse load and warm-up cool-down
degradation can be reached by applying longer twist pitches in a particular
sequence for the sub-stages, offering a large cable transverse stiffness,
adequate axial flexibility and maximum allowed lateral strand support. Analysis
of short sample (TF conductor) data reveals that increasing the twist pitch can
lead to a gain of the effective axial compressive strain of more than 0.3 %
with practically no degradation from bending. For reduction of the coupling
loss, specific choices of the cabling twist sequence are needed with the aim to
minimize the area of linked strands and bundles that are coupled and form loops
with the applied changing magnetic field, instead of simply avoiding longer
pitches. In addition we recommend increasing the wrap coverage of the CS
conductor from 50 % to at least 70 %. The models predict significant
improvement against strain sensitivity and substantial decrease of the AC
coupling loss in Nb3Sn CICCs, but also for NbTi CICCs minimization of the
coupling loss can be achieved. Although the success of long pitches to
transverse load degradation was already demonstrated, the prediction of the
combination with low coupling loss needs to be validated by a short sample
test.Comment: to be published in Supercond Sci Techno
Trapped electron coupled to superconducting devices
We propose to couple a trapped single electron to superconducting structures
located at a variable distance from the electron. The electron is captured in a
cryogenic Penning trap using electric fields and a static magnetic field in the
Tesla range. Measurements on the electron will allow investigating the
properties of the superconductor such as vortex structure, damping and
decoherence. We propose to couple a superconducting microwave resonator to the
electron in order to realize a circuit QED-like experiment, as well as to
couple superconducting Josephson junctions or superconducting quantum
interferometers (SQUIDs) to the electron. The electron may also be coupled to a
vortex which is situated in a double well potential, realized by nearby pinning
centers in the superconductor, acting as a quantum mechanical two level system
that can be controlled by a transport current tilting the double well
potential. When the vortex is trapped in the interferometer arms of a SQUID,
this would allow its detection both by the SQUID and by the electron.Comment: 13 pages, 5 figure
Burgers' Flows as Markovian Diffusion Processes
We analyze the unforced and deterministically forced Burgers equation in the
framework of the (diffusive) interpolating dynamics that solves the so-called
Schr\"{o}dinger boundary data problem for the random matter transport. This
entails an exploration of the consistency conditions that allow to interpret
dispersion of passive contaminants in the Burgers flow as a Markovian diffusion
process. In general, the usage of a continuity equation , where stands for the
Burgers field and is the density of transported matter, is at variance
with the explicit diffusion scenario. Under these circumstances, we give a
complete characterisation of the diffusive transport that is governed by
Burgers velocity fields. The result extends both to the approximate description
of the transport driven by an incompressible fluid and to motions in an
infinitely compressible medium. Also, in conjunction with the Born statistical
postulate in quantum theory, it pertains to the probabilistic (diffusive)
counterpart of the Schr\"{o}dinger picture quantum dynamics.Comment: Latex fil
ПОБУДОВА ФУНКЦІОНАЛЬНО СТІЙКОЇ ІНФОРМАЦІЙНО-КЕРУЮЧОЇ СИСТЕМИ КОНТРОЛЮ ПЕРЕВЕЗЕНЬ РАДІОАКТИВНИХ МАТЕРІАЛІВ
У статті розглянуто центр управління перевезень радіоактивних матеріалів, який є інформаційно-керуючою системою і складається з безлічі елементів, пов'язаних між собою. Побудова та можливість подальшої модернізації такої автоматизованої системи на початку потребує комплексної розробки, яка буде включати в себе проектування структури системи, технічне проектування окремих складових елементів і пристроїв та оптимізація цих елементів та підсистем, які будуть спливати при встановлені зв’язків між ними. При впровадженні цієї системи необхідно врахувати чинники, які можуть вплинути на її працездатність. Запропоновано концепцію застосування функціональної стійкості, як властивості системи, що дозволить забезпечити безперебійну роботу шляхом перерозподілу існуючих ресурсів
Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors
Thorough spectral study of the intrinsic single-photon detection efficiency
in superconducting TaN and NbN nanowires with different widths shows that the
experimental cut-off in the efficiency at near-infrared wavelengths is most
likely caused by the local deficiency of Cooper pairs available for current
transport. For both materials the reciprocal cut-off wavelength scales with the
wire width whereas the scaling factor quantitatively agrees with the hot-spot
detection models. Comparison of the experimental data with vortex-assisted
detection scenarios shows that these models predict a stronger dependence of
the cut-off wavelength on the wire width.Comment: 16 pages, 6 figure
Micro-CT-based analysis of fibre-reinforced composites:Applications
The paper presents an overview of cases in which the analysis of the internal structure and mechanical properties of fibre reinforced composites is performed based on the micro-computed X-ray tomography (micro-CT) reconstruction of the composite reinforcement geometry. In all the cases, the analysis relies on structure tensor-based algorithms for quantification of the micro-CT image, implemented in VoxTex software
The location of the axon initial segment affects the bandwidth of spike initiation dynamics
The dynamics and the sharp onset of action potential (AP) generation have recently been the subject of intense experimental and theoretical investigations. According to the resistive coupling theory, an electrotonic interplay between the site of AP initiation in the axon and the somato-dendritic load determines the AP waveform. This phenomenon not only alters the shape of AP recorded at the soma, but also determines the dynamics of excitability across a variety of time scales. Supporting this statement, here we generalize a previous numerical study and extend it to the quantification of the input-output gain of the neuronal dynamical response. We consider three classes of multicompartmental mathematical models, ranging from ball-and-stick simplified descriptions of neuronal excitability to 3D-reconstructed biophysical models of excitatory neurons of rodent and human cortical tissue. For each model, we demonstrate that increasing the distance between the axonal site of AP initiation and the soma markedly increases the bandwidth of neuronal response properties. We finally consider the Liquid State Machine paradigm, exploring the impact of altering the site of AP initiation at the level of a neuronal population, and demonstrate that an optimal distance exists to boost the computational performance of the network in a simple classification task. Copyright
- …
