3,389 research outputs found

    Interlacing Log-concavity of the Boros-Moll Polynomials

    Full text link
    We introduce the notion of interlacing log-concavity of a polynomial sequence {Pm(x)}m0\{P_m(x)\}_{m\geq 0}, where Pm(x)P_m(x) is a polynomial of degree m with positive coefficients ai(m)a_{i}(m). This sequence of polynomials is said to be interlacing log-concave if the ratios of consecutive coefficients of Pm(x)P_m(x) interlace the ratios of consecutive coefficients of Pm+1(x)P_{m+1}(x) for any m0m\geq 0. Interlacing log-concavity is stronger than the log-concavity. We show that the Boros-Moll polynomials are interlacing log-concave. Furthermore we give a sufficient condition for interlacing log-concavity which implies that some classical combinatorial polynomials are interlacing log-concave.Comment: 10 page

    Hidden regret in insurance markets: adverse and advantageous selection

    Get PDF
    We examine insurance markets with two types of customers: those who regret suboptimal decisions and those who don.t. In this setting, we characterize the equilibria under hidden information about the type of customers and hidden action. We show that both pooling and separating equilibria can exist. Furthermore, there exist separating equilibria that predict a positive correlation between the amount of insurance coverage and risk type, as in the standard economic models of adverse selection, but there also exist separating equilibria that predict a negative correlation between the amount of insurance coverage and risk type, i.e. advantageous selection. Since optimal choice of regretful customers depends on foregone alternatives, any equilibrium includes a contract which is o¤ered but not purchased
    corecore