5,227 research outputs found
Etude de conservation des eaux et du sol au Centre de Recherches du Génie Rural de Tunisie : application à un projet-type de la formule de perte de sols de Wischmeier
Linear Connections on the Two Parameter Quantum Plane
We apply a recently proposed definition of a linear connection in non
commutative geometry based on the natural bimodule structure of the algebra of
differential forms to the case of the two-parameter quantum plane. We find that
there exists a non trivial family of linear connections only when the two
parameters obeys a specific relation.Comment: 7 pages, Te
ESTSS at 20 years: "a phoenix gently rising from a lava flow of European trauma"
Roderick J. Ørner, who was President between 1997 and 1999, traces the phoenix-like origins of the European Society for Traumatic Stress Studies (ESTSS) from an informal business meeting called during the 1st European Conference on Traumatic Stress (ECOTS) in 1987 to its emergence into a formally constituted society. He dwells on the challenges of tendering a trauma society within a continent where trauma has been and remains endemic. ESTSS successes are noted along with a number of personal reflections on activities that give rise to concern for the present as well as its future prospects. Denial of survivors' experiences and turning away from survivors' narratives by reframing their experiences to accommodate helpers' theory-driven imperatives are viewed with alarm. Arguments are presented for making human rights, memory, and ethics core elements of a distinctive European psycho traumatology, which will secure current ESTSS viability and future integrity
Vortex in Maxwell-Chern-Simons models coupled to external backgrounds
We consider Maxwell-Chern-Simons models involving different non-minimal
coupling terms to a non relativistic massive scalar and further coupled to an
external uniform background charge. We study how these models can be
constrained to support static radially symmetric vortex configurations
saturating the lower bound for the energy. Models involving Zeeman-type
coupling support such vortices provided the potential has a "symmetry breaking"
form and a relation between parameters holds. In models where minimal coupling
is supplemented by magnetic and electric field dependant coupling terms, non
trivial vortex configurations minimizing the energy occur only when a non
linear potential is introduced. The corresponding vortices are studied
numericallyComment: LaTeX file, 2 figure
Synchronous Behavior of Two Coupled Electronic Neurons
We report on experimental studies of synchronization phenomena in a pair of
analog electronic neurons (ENs). The ENs were designed to reproduce the
observed membrane voltage oscillations of isolated biological neurons from the
stomatogastric ganglion of the California spiny lobster Panulirus interruptus.
The ENs are simple analog circuits which integrate four dimensional
differential equations representing fast and slow subcellular mechanisms that
produce the characteristic regular/chaotic spiking-bursting behavior of these
cells. In this paper we study their dynamical behavior as we couple them in the
same configurations as we have done for their counterpart biological neurons.
The interconnections we use for these neural oscillators are both direct
electrical connections and excitatory and inhibitory chemical connections: each
realized by analog circuitry and suggested by biological examples. We provide
here quantitative evidence that the ENs and the biological neurons behave
similarly when coupled in the same manner. They each display well defined
bifurcations in their mutual synchronization and regularization. We report
briefly on an experiment on coupled biological neurons and four dimensional ENs
which provides further ground for testing the validity of our numerical and
electronic models of individual neural behavior. Our experiments as a whole
present interesting new examples of regularization and synchronization in
coupled nonlinear oscillators.Comment: 26 pages, 10 figure
Interchange Slip-Running Reconnection and Sweeping SEP Beams
We present a new model to explain how particles (solar energetic particles;
SEPs), accelerated at a reconnection site that is not magnetically connected to
the Earth, could eventually propagate along the well-connected open flux tube.
Our model is based on the results of a low-beta resistive magnetohydrodynamics
simulation of a three-dimensional line-tied and initially current-free bipole,
that is embedded in a non-uniform open potential field. The topology of this
configuration is that of an asymmetric coronal null-point, with a closed fan
surface and an open outer spine. When driven by slow photospheric shearing
motions, field lines, initially fully anchored below the fan dome, reconnect at
the null point, and jump to the open magnetic domain. This is the standard
interchange mode as sketched and calculated in 2D. The key result in 3D is
that, reconnected open field lines located in the vicinity of the outer spine,
keep reconnecting continuously, across an open quasi-separatrix layer, as
previously identified for non-open-null-point reconnection. The apparent
slipping motion of these field lines leads to form an extended narrow magnetic
flux tube at high altitude. Because of the slip-running reconnection, we
conjecture that if energetic particles would be traveling through, or be
accelerated inside, the diffusion region, they would be successively injected
along continuously reconnecting field lines that are connected farther and
farther from the spine. At the scale of the full Sun, owing to the super-radial
expansion of field lines below 3 solar radii, such energetic particles could
easily be injected in field lines slipping over significant distances, and
could eventually reach the distant flux tube that is well-connected to the
Earth
Global quantum Hall phase diagram from visibility diagrams
We propose a construction of a global phase diagram for the quantum Hall
effect. This global phase diagram is based on our previous constructions of
visibility diagrams in the context of the Quantum Hall Effect. The topology of
the phase diagram we obtain is in good agreement with experimental observations
(when the spin effect can be neglected). This phase diagram does not show
floating.Comment: LaTeX2e, 9 pages, 5 eps figure
Zonal shear and super-rotation in a magnetized spherical Couette flow experiment
We present measurements performed in a spherical shell filled with liquid
sodium, where a 74 mm-radius inner sphere is rotated while a 210 mm-radius
outer sphere is at rest. The inner sphere holds a dipolar magnetic field and
acts as a magnetic propeller when rotated. In this experimental set-up called
DTS, direct measurements of the velocity are performed by ultrasonic Doppler
velocimetry. Differences in electric potential and the induced magnetic field
are also measured to characterize the magnetohydrodynamic flow. Rotation
frequencies of the inner sphere are varied between -30 Hz and +30 Hz, the
magnetic Reynolds number based on measured sodium velocities and on the shell
radius reaching to about 33. We have investigated the mean axisymmetric part of
the flow, which consists of differential rotation. Strong super-rotation of the
fluid with respect to the rotating inner sphere is directly measured. It is
found that the organization of the mean flow does not change much throughout
the entire range of parameters covered by our experiment. The direct
measurements of zonal velocity give a nice illustration of Ferraro's law of
isorotation in the vicinity of the inner sphere where magnetic forces dominate
inertial ones. The transition from a Ferraro regime in the interior to a
geostrophic regime, where inertial forces predominate, in the outer regions has
been well documented. It takes place where the local Elsasser number is about
1. A quantitative agreement with non-linear numerical simulations is obtained
when keeping the same Elsasser number. The experiments also reveal a region
that violates Ferraro's law just above the inner sphere.Comment: Phys Rev E, in pres
CO (2–1) observations of Maffei 2
Maffei 2 is a highly obscured galaxy, probably of type Sbc, at a distance of 5 Mpc (Allen and Raimond 1972; Spinrad et al. 1973). Since it lies close to the Galactic plane, there is considerable confusion in infrared and 21-cm HI observations due to Galactic emission, but investigations of its structure can be carried out at millimeter wavelengths where the Galaxy contribution is confined to a limited velocity range. The high resolution (30″) of our CO J=2–1 observations permits both a detailed examination of Maffei 2 and a study of the nature of the gas in its nucleus, through comparison with the CO J=1–0 observations
- …
