2,560 research outputs found

    Microstructure and mechanical properties of hip-consolidated Rene 95 powders

    Get PDF
    The effects of heat-treatments on the microstructure of P/M Rene 95 (a nickel-based powder metal), consolidated by the hot-isostatic pressing (HIP), were examined. The microstructure of as-HIP'd specimen was characterized by highly serrated grain boundaries. Mechanical tests and microstructural observations reveal that the serrated grain boundaries improved ductility at both room and elevated temperatures by retarding crack propagation along grain boundaries

    Near term measurements with 21 cm intensity mapping: neutral hydrogen fraction and BAO at z<2

    Full text link
    It is shown that 21 cm intensity mapping could be used in the near term to make cosmologically useful measurements. Large scale structure could be detected using existing radio telescopes, or using prototypes for dedicated redshift survey telescopes. This would provide a measure of the mean neutral hydrogen density, using redshift space distortions to break the degeneracy with the linear bias. We find that with only 200 hours of observing time on the Green Bank Telescope, the neutral hydrogen density could be measured to 25% precision at redshift 0.54<z<1.09. This compares favourably to current measurements, uses independent techniques, and would settle the controversy over an important parameter which impacts galaxy formation studies. In addition, a 4000 hour survey would allow for the detection of baryon acoustic oscillations, giving a cosmological distance measure at 3.5% precision. These observation time requirements could be greatly reduced with the construction of multiple pixel receivers. Similar results are possible using prototypes for dedicated cylindrical telescopes on month time scales, or SKA pathfinder aperture arrays on day time scales. Such measurements promise to improve our understanding of these quantities while beating a path for future generations of hydrogen surveys.Comment: 6 pages, 5 figures. Submitted to Phys. Rev. D. Addressed reviewer comments. Changed figure format, added more detailed technical discussion, and added forecasts for aperture arrays. Added references

    Dispersion of Magnetic Excitations in Superconducting Optimally Doped YBa_2Cu_3O_6.95

    Full text link
    Detailed neutron scattering measurements of YBa_2Cu_3O_6.95 found that the resonance peak and incommensurate magnetic scattering induced by superconductivity represent the same physical phenomenon: two dispersive branches that converge near 41 meV and the in-plane wave-vector q_af=(pi/a, pi/a) to form the resonance peak. One branch has a circular symmetry around q_af and quadratic downward dispersion from ~41 meV to the spin gap of 33+-1meV. The other, of lower intensity, disperses from ~41 meV to at least 55 meV. Our results exclude a quartet of vertical incommensurate rods in q-w space expected from spin waves produced by dynamical charge stripes as an origin of the observed incommensurate scattering in optimally-doped YBCO.Comment: Version 3: Author change. Changes made throughout the text and minor changes in figures, Model parameters slightly changed after a small error in the calculation was discovere

    Mott gap excitations in twin-free YBa2Cu3O7-d (Tc = 93 K) studied by RIXS

    Get PDF
    Mott gap excitations in the high-Tc superconductor of the optimal doped YBa2Cu3O7-d (Tc = 93 K) have been studied by the resonant inelastic x-ray scattering method. Anisotropic spectra in the ab-plane are observed in a twin-free crystal. The excitation from the one-dimensional CuO chain is enhanced at 2 eV near the zone boundary of the b* direction, while the excitation from the CuO2 plane is broad at 1.5-4 eV and almost independent of the momentum transfer. Theoretical calculation based on the one-dimensional and two-dimensional Hubbard model reproduces the observed spectra by taking the different parameters of the on-site Coulomb energy. The fact of the Mott gap of the CuO chain site is much smaller than that of CuO2 plane site is observed for the first time

    Oxygen Phonon Branches in Detwinned YBa2Cu3O7

    Full text link
    We report results of inelastic neutron scattering measurements of phonon dispersions on a detwinned sample of YBaCu3O7 and compare them with model calculations. Plane oxygen bond stretching phonon branches disperse steeply downwards from the zone center in both the a and the b direction indicating a strong electron-phonon coupling. Half way to the zone boundary, the phonon peaks become ill-defined but we see no need to invoke unit cell doubling or charge stripe formation: lattice dynamical shell model calculations predict such behavior as a result of branch anticrossings. There were no observable superconductivity-related temperature effects on selected plane oxygen bond stretching modes measured on a twinned sample.Comment: 5 pages, 3 figures, To appear in Journal of Low Temperature Physics (Proceedings of MOS2002; Revised version (1) with many changes throughout the tex

    Cost of preventing workplace heat-related illness through worker breaks and the benefit of climate-change mitigation

    Get PDF
    The exposure of workers to hot environments is expected to increase as a result of climate change. In order to prevent heat-related illness, it is recommended that workers take breaks during working hours. However, this would lead to reductions in worktime and labor productivity. In this study, we estimate the economic cost of heat-related illness prevention through worker breaks associated with climate change under a wide range of climatic and socioeconomic conditions. We calculate the worktime reduction based on the recommendation of work/rest ratio and the estimated future wet bulb glove temperature, which is an index of heat stresses. Corresponding GDP losses (cost of heat-related illness prevention through worker breaks) are estimated using a computable general equilibrium model throughout this century. Under the highest emission scenario, GDP losses in 2100 will range from 2.6 to 4.0% compared to the current climate conditions. On the other hand, GDP losses will be less than 0.5% if the 2.0 °C goal is achieved. The benefit of climate-change mitigation for avoiding worktime loss is comparable to the cost of mitigation (cost of the greenhouse gas emission reduction) under the 2.0 °C goal. The relationship between the cost of heat-related illness prevention through worker breaks and global average temperature rise is approximately linear, and the difference in economic loss between the 1.5 °C goal and the 2.0 °C goal is expected to be approximately 0.3% of global GDP in 2100. Although climate mitigation and socioeconomic development can limit the vulnerable regions and sectors, particularly in developing countries, outdoor work is still expected to be affected. The effectiveness of some adaptation measures such as additional installation of air conditioning devices or shifting the time of day for working are also suggested. In order to reduce the economic impacts, adaptation measures should also be implemented as well as pursing ambitious climate change mitigation targets

    Oxygen Phonon Branches in YBa2Cu3O7

    Full text link
    We report results of inelastic neutron scattering measurements of phonon dispersions in optimally doped YBa2Cu3O6.95 and compare them with model calculations. The focus is on the in-plane oxygen bond-stretching phonon branches. The study of these modes is complicated by anticrossings with c-axis-polarized branches; such effects are interpreted through lattice-dynamical shell-model calculations. The in-plane anisotropy of the bond-stretching phonons was firmly ascertained from measurements on a detwinned sample. Studying the in-plane modes involving out-of-phase motion for the two Cu-O layers within a unit cell as well as those with in-phase motion was of great help for establishing a clear experimental picture. The measurements confirm that the in-plane oxygen bond-stretching phonon branches disperse steeply downwards from the zone center in both the a and the b directions indicating a strong electron-phonon coupling. For the b-axis-polarized bond-stretching phonons, there is an additional feature of considerable interest: a sharp local frequency minimum was found to develop on cooling from room temperature to T = 10 K at the wave vector q = 0.27 r.l.u..Comment: 10 pages, 13 figure

    Measurement of 21 cm brightness fluctuations at z ~ 0.8 in cross-correlation

    Full text link
    In this letter, 21 cm intensity maps acquired at the Green Bank Telescope are cross-correlated with large-scale structure traced by galaxies in the WiggleZ Dark Energy Survey. The data span the redshift range 0.6 < z < 1 over two fields totaling ~41 deg. sq. and 190 hours of radio integration time. The cross-correlation constrains Omega_HI b_HI r = [0.43 \pm 0.07 (stat.) \pm 0.04(sys.)] x 10^-3, where Omega_HI is the neutral hydrogen HI fraction, r is the galaxy-hydrogen correlation coefficient, and b_HI is the HI bias parameter. This is the most precise constraint on neutral hydrogen density fluctuations in a challenging redshift range. Our measurement improves the previous 21 cm cross-correlation at z ~ 0.8 both in its precision and in the range of scales probed.Comment: 5 pages, 2 figures. As published in Ap
    corecore