578 research outputs found

    Superconductivity in Tetragonal LaPt_{2-x}Ge_{2+x}

    Full text link
    We find that a tetragonal CaBe_2Ge_2-type structure can be stabilized in non-stoichiometric LaPt_{2-x}Ge_{2+x}. We further discovered that tetragonal LaPt_{2-x}Ge_{2+x} with x=0.15 and 0.2 respectively superconduct at Tc=1.85 K and 1.95 K, which is about four time higher than that in monoclinic LaPt_2Ge_2.Comment: 6 pages, 4 figure

    Spin-singlet superconductivity with a full gap in locally non-centrosymmetric SrPtAs

    Full text link
    We report 195^{195}Pt-NMR and 75^{75}As-NQR measurements for the locally non-centrosymmetric superconductor SrPtAs where the As-Pt layer breaks inversion symmetry while globally the compound is centrosymmetric. The nuclear spin lattice relaxation rate 1/T11/T_1 shows a well-defined coherence peak below TcT_c and decreases exponentially at low temperatures. The spin susceptibility measured by the Knight shift also decreases below TcT_c down to T<Tc/6T<T_c/6. These data together with the penetration depth obtained from the NMR spectra can be consistently explained by assuming a spin-singlet superconducting state with a full gap. Our results suggest that the spin-orbit coupling due to the local inversion-breaking is not large enough to bring about an exotic superconducting state, or the inter-layer hopping interaction is larger than the spin-orbit coupling.Comment: 10 pages, 6 figures. Accepted in Phys. Rev. B (Rapid Commun.

    Anisotropic spin fluctuations and multiple superconducting gaps in hole-doped Ba_0.7K_0.3Fe_2As_2: NMR in a single crystal

    Full text link
    We report the first ^{75}As-NMR study on a single crystal of the hole-doped iron-pnictide superconductor Ba_{0.7}K_{0.3}Fe_2As_{2} (T_c = 31.5 K). We find that the Fe antiferromagnetic spin fluctuations are anisotropic and are weaker compared to underdoped copper-oxides or cobalt-oxide superconductors. The spin lattice relaxation rate 1/T_1 decreases below T_c with no coherence peak and shows a step-wise variation at low temperatures, which is indicative of multiple superconducting gaps, as in the electron-doped Pr(La)FeAsO1x_{1-x}Fx_{x}. Furthermore, no evidence was obtained for a microscopic coexistence of a long-range magnetic and superconductivity

    Pressure-induced unconventional superconductivity near a quantum critical point in CaFe2As2

    Full text link
    75As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements are performed on CaFe2As2 under pressure. At P = 4.7 and 10.8 kbar, the temperature dependences of nuclear-spin-lattice relaxation rate (1/T1) measured in the tetragonal phase show no coherence peak just below Tc(P) and decrease with decreasing temperature. The superconductivity is gapless at P = 4.7 kbar but evolves to that with multiple gaps at P = 10.8 kbar. We find that the superconductivity appears near a quantum critical point under pressures in the range 4.7 kbar < P < 10.8 kbar. Both electron correlation and superconductivity disappear in the collapsed tetragonal phase. A systematic study under pressure indicates that electron correlations play a vital role in forming Cooper pairs in this compound.Comment: 5pages, 5figure

    Evidence for Unconventional Superconductivity in Arsenic-Free Iron-Based Superconductor FeSe : A ^77Se-NMR Study

    Full text link
    We report the results of 77^{77}Se--nuclear magnetic resonance (NMR) in α\alpha-FeSe, which exhibits a similar crystal structure to the LaFeAsO1x_{1-x}Fx_x superconductor and shows superconductivity at 8 K. The nuclear-spin lattice relaxation rate 1/T11/T_1 shows T3T^3 behavior below the superconducting transition temperature TcT_c without a coherence peak. The T1T=T_1T= const. behavior, indicative of the Fermi liquid state, can be seen in a wide temperature range above TcT_c. The superconductivity in α\alpha-FeSe is also an unconventional one as well as LaFeAsO1x_{1-x}Fx_x and related materials. The FeAs layer is not essential for the occurrence of the unconventional superconductivity.Comment: 4pages, 4figures, to be published in J. Phys. Soc. Jpn. 77 No.11 (2008

    Spin-Rotation Symmetry Breaking in the Superconducting State of CuxBi2Se3

    Full text link
    Spontaneous symmetry breaking is an important concept for understanding physics ranging from the elementary particles to states of matter. For example, the superconducting state breaks global gauge symmetry, and unconventional superconductors can break additional symmetries. In particular, spin rotational symmetry is expected to be broken in spin-triplet superconductors. However, experimental evidence for such symmetry breaking has not been conclusively obtained so far in any candidate compounds. Here, by 77Se nuclear magnetic resonance measurements, we show that spin rotation symmetry is spontaneously broken in the hexagonal plane of the electron-doped topological insulator Cu0.3Bi2Se3 below the superconducting transition temperature Tc=3.4 K. Our results not only establish spin-triplet superconductivity in this compound, but may also serve to lay a foundation for the research of topological superconductivity

    Strong-coupling Spin-singlet Superconductivity with Multiple Full Gaps in Hole-doped Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2 Probed by Fe-NMR

    Full text link
    We present 57^{57}Fe-NMR measurements of the novel normal and superconducting-state characteristics of the iron-arsenide superconductor Ba0.6_{0.6}K0.4_{0.4}Fe2_2As2_2 (TcT_c = 38 K). In the normal state, the measured Knight shift and nuclear spin-lattice relaxation rate (1/T1)(1/T_1) demonstrate the development of wave-number (qq)-dependent spin fluctuations, except at qq = 0, which may originate from the nesting across the disconnected Fermi surfaces. In the superconducting state, the spin component in the 57^{57}Fe-Knight shift decreases to almost zero at low temperatures, evidencing a spin-singlet superconducting state. The 57^{57}Fe-1/T11/T_1 results are totally consistent with a s±s^\pm-wave model with multiple full gaps, regardless of doping with either electrons or holes.Comment: 4 pages, 4 figures, 1 tabl

    Na content dependence of superconductivity and the spin correlations in Na_{x}CoO_{2}\cdot 1.3H_{2}O

    Full text link
    We report systematic measurements using the ^{59}Co nuclear quadrupole resonance(NQR) technique on the cobalt oxide superconductors Na_{x}CoO_{2}\cdot 1.3H_{2}O over a wide Na content range x=0.25\sim 0.34. We find that T_c increases with decreasing x but reaches to a plateau for x \leq0.28. In the sample with x \sim 0.26, the spin-lattice relaxation rate 1/T_1 shows a T^3 variation below T_c and down to T\sim T_c/6, which unambiguously indicates the presence of line nodes in the superconducting (SC) gap function. However, for larger or smaller x, 1/T_1 deviates from the T^3 variation below T\sim 2 K even though the T_c (\sim 4.7 K) is similar, which suggests an unusual evolution of the SC state. In the normal state, the spin correlations at a finite wave vector become stronger upon decreasing x, and the density of states at the Fermi level increases with decreasing x, which can be understood in terms of a single-orbital picture suggested on the basis of LDA calculation.Comment: version published in J. Phys. Condens. Matter (references updated and more added

    Magnetism and Superconductivity in the Two-Dimensional 16 Band d-p Model for Iron-Based Superconductors

    Full text link
    The electronic states of the Fe2As2 plane in iron-based superconductors are investigated on the basis of the two-dimensional 16-band d-p model which includes the Coulomb interaction on a Fe site: the intra- and inter-orbital direct terms U and U', the Hund's coupling J and the pair-transfer J'. Using the random phase approximation (RPA), we obtain the magnetic phase diagram including the stripe and the incommensurate order on the U'-J plane. We also solve the superconducting gap equation within the RPA and find that, for large J, the most favorable pairing symmetry is extended s-wave whose order parameter changes its sign between the hole pockets and the electron pockets, while it is dxy-wave for small J.Comment: 4 pages, 5 figure

    59-Co and 75-As NMR Investigation of Electron-Doped High Tc Superconductor BaFe(1.8)Co(0.2)As(2) (Tc = 22K)

    Full text link
    We report an NMR investigation of the superconductivity in BaFe(2)As(2) induced by Co doping (Tc=22K). We demonstrate that Co atoms form an alloy with Fe atoms and donate carriers without creating localized moments. Our finding strongly suggests that the underlying physics of iron-pnictide superconductors is quite different from the widely accepted physical picture of high Tc cuprates as doped Mott insulators. We also show a crossover of electronic properties into a low temperature pseudo-gap phase with a pseudo-gap Delta 560K, where chi(spin) constant and resisitivty T. The NMR Knight shift below Tc decreases for both along the c-axis and ab-plane, and is consistent with the singlet pairing scenario.Comment: Accepted for publication in J. Phys. Soc. Jpn. (4 pages
    corecore