23,425 research outputs found
Vacuum structure and effective potential at finite temperature: a variational approach
We compute the effective potential for theory with a squeezed
coherent state type of construct for the ground state. The method essentially
consists in optimising the basis at zero and finite temperatures. The gap
equation becomes identical to resumming the infinite series of daisy and super
daisy graphs while the effective potential includes multiloop effects and
agrees with that obtained through composite operator formalism at finite
temperature.Comment: 15 pages, Revtex, No figures, to appear in Jou. of Phys.G(Nucl. and
Part. Phys.
Chiral Symmetry Breaking and Pion Wave Function
We consider here chiral symmetry breaking through nontrivial vacuum structure
with quark antiquark condensates. We then relate the condensate function to the
wave function of pion as a Goldstone mode. This simultaneously yields the pion
also as a quark antiquark bound state as a localised zero mode in vacuum. We
illustrate the above with Nambu Jona-Lasinio model to calculate different
pionic properties in terms of the vacuum structure for breaking of exact or
approximate chiral symmetry, as well as the condensate fluctuations giving rise
to mesons.Comment: latex, revtex, 16 page
Recommended from our members
Secure state estimation against sensor attacks in the presence of noise
We consider the problem of estimating the state of a noisy linear dynamical system when an unknown subset of sensors is arbitrarily corrupted by an adversary. We propose a secure state estimation algorithm, and derive (optimal) bounds on the achievable state estimation error given an upper bound on the number of attacked sensors. The proposed state estimator involves Kalman filters operating over subsets of sensors to search for a sensor subset which is reliable for state estimation. To further improve the subset search time, we propose Satisfiability Modulo Theory-based techniques to exploit the combinatorial nature of searching over sensor subsets. Finally, as a result of independent interest, we give a coding theoretic view of attack detection and state estimation against sensor attacks in a noiseless dynamical system
Vector meson masses in hot nuclear matter : the effect of quantum corrections
The medium modification of vector meson masses is studied taking into account
the quantum correction effects for the hot and dense hadronic matter. In the
framework of Quantum Hadrodynamics, the quantum corrections from the baryon and
scalar meson sectors were earlier computed using a nonperturbative variational
approach through a realignment of the ground state with baryon-antibaryon and
sigma meson condensates. The effect of such corrections was seen to lead to a
softer equation of state giving rise to a lower value for the compressibility
and, an increase in the in-medium baryonic masses than would be reached when
such quantum effects are not taken into account. These quantum corrections
arising from the scalar meson sector result in an increase in the masses of the
vector mesons in the hot and dense matter, as compared to the situation when
only the vacuum polarisation effects from the baryonic sector are taken into
account.Comment: 13 pages revtex file, 6 figure
A microfluidic device for the study of the orientational dynamics of microrods
We describe a microfluidic device for studying the orientational dynamics of
microrods. The device enables us to experimentally investigate the tumbling of
microrods immersed in the shear flow in a microfluidic channel with a depth of
400 mu and a width of 2.5 mm. The orientational dynamics was recorded using a
20 X microscopic objective and a CCD camera. The microrods were produced by
shearing microdroplets of photocurable epoxy resin. We show different examples
of empirically observed tumbling. On the one hand we find that short stretches
of the experimentally determined time series are well described by fits to
solutions of Jeffery's approximate equation of motion [Jeffery, Proc. R. Soc.
London. 102 (1922), 161-179]. On the other hand we find that the empirically
observed trajectories drift between different solutions of Jeffery's equation.
We discuss possible causes of this orbit drift.Comment: 11 pages, 8 figure
- …
