816 research outputs found
Full-Coupled Channel Approach to Doubly Strange -Shell Hypernuclei
We describe {\it ab initio} calculations of doubly strange, , -shell
hypernuclei (H, H,
He and He) as a first attempt to
explore the few-body problem of the {\it full}-coupled channel scheme for these
systems. The wave function includes , ,
and channels. Minnesota , D2 , and
simulated potentials based on the Nijmegen hard-core model, are used.
Bound state solutions of these systems are obtained. We find that a set of
phenomenological interactions among the octet baryons in and
-2 sectors, which is consistent with all of the available experimental binding
energies of and -2 -shell (hyper-)nuclei, can predict a particle
stable bound state of H.
For H and He,
and potentials enhance the net
coupling, and a large probability is obtained even for a weaker
potential.Comment: 4 pages, 1 figur
Feasibility of extracting a admixture probability in the neutron-rich Li hypernucleus
We examine theoretically production of the neutron-rich Li
hypernucleus by a double-charge exchange (, ) reaction on a
B target with distorted-wave impulse approximation calculations. The
result shows that the magnitude and shape of the calculated spectrum at 1.20
GeV/c by a one-step mechanism via doorways
caused by a coupling can explain the
recent experimental data, and the admixture probability in
Li is found to be the order of 10 %. The (,
) reaction provides a capability of extracting properties of wave
functions with - coupling effects in neutron-rich nuclei,
together with the reaction mechanism.Comment: 13 pages, 3 figure
Multidrug Resistance-associated Protein 2 (MRP2) mediated transport of Oxaliplatin-derived platinum in membrane vesicles
The platinum-based anticancer drug oxaliplatin is important clinically in cancer treatment. However, the role of multidrug resistance-associated protein 2 (MRP2) in controlling oxaliplatin membrane transport, in vivo handling, toxicity and therapeutic responses is unclear. In the current study, preparations of MRP2-expressing and control membrane vesicles, containing inside-out orientated vesicles, were used to directly characterise the membrane transport of oxaliplatin-derived platinum measured by inductively coupled plasma mass spectrometry. Oxaliplatin inhibited the ATP-dependent accumulation of the model MRP2 fluorescent probe, 5(6)-carboxy-2,'7'-dichlorofluorescein, in MRP2-expressing membrane vesicles. MRP2-expressing membrane vesicles accumulated up to 19-fold more platinum during their incubation with oxaliplatin and ATP as compared to control membrane vesicles and in the absence of ATP. The rate of ATP-dependent MRP2-mediated active transport of oxaliplatin-derived platinum increased non-linearly with increasing oxaliplatin exposure concentration, approaching a plateau value (Vmax) of 2680 pmol Pt/mg protein/10 minutes (95%CI, 2010 to 3360 pmol Pt/mg protein/10 minutes), with the half-maximal platinum accumulation rate (Km) at an oxaliplatin exposure concentration of 301 μM (95% CI, 163 to 438 μM), in accordance with Michaelis-Menten kinetics (r2 = 0.954). MRP2 inhibitors (myricetin and MK571) reduced the ATP-dependent accumulation of oxaliplatin-derived platinum in MRP2-expressing membrane vesicles in a concentration-dependent manner. To identify whether oxaliplatin, or perhaps a degradation product, was the likely substrate for this active transport, HPLC studies were undertaken showing that oxaliplatin degraded slowly in membrane vesicle incubation buffer containing chloride ions and glutathione, with approximately 95% remaining intact after a 10 minute incubation time and a degradation half-life of 2.24 hours (95%CI, 2.08 to 2.43 hours). In conclusion, MRP2 mediates the ATP-dependent active membrane transport of oxaliplatin-derived platinum. Intact oxaliplatin and its anionic monochloro oxalate ring-opened intermediate appear likely candidates as substrates for MRP2-mediated transport
Hyperonic mixing in five-baryon double-strangeness hypernuclei in a two-channel treatment
Properties of hypernuclei H and He are studied in a two-channel approach with explicit treatment of
coupling of channels ^3\text{Z}+\Lambda+\Lambda and \alpha+\Xi. Diagonal
\Lambda\Lambda and coupling \Lambda\Lambda-\Xi N interactions are derived
within G-matrix procedure from Nijmegen meson-exchange models. Bond energy
\Delta B_{\Lambda\Lambda} in He exceeds significantly
that in H due to the channel coupling. Diagonal \Xi\alpha
attraction amplifies the effect, which is sensitive also to \Lambda-core
interaction. The difference of the \Delta B_{\Lambda\Lambda} values can be an
unambiguous signature of the \Lambda\Lambda-\Xi N coupling in \Lambda\Lambda
hypernuclei. However, improved knowledge of the hyperon-nucleus potentials is
needed for quantitative extraction of the coupling strength from future data on
the \Lambda\Lambda hypernuclear binding energies.Comment: 11 pages with 3 figures; Phys. Rev. C, accepte
Stochastic Variational Search for H
A four-body calculation of the bound state, $^{\
4}_{\Lambda\Lambda}NN\Lambda N\Lambda\Lambda\Lambda\Lambda_\Lambda^3{H}+\Lambda\Lambda\LambdaB_{\Lambda\Lambda}(^{6}_{\Lambda\Lambda}{He})d\Lambda\Lambda$ model in the Letter.Comment: Corrected typos, added addtional calculations regarding a truncated
to l=0 interaction model, 4 pages, 3 figure
-- coupling in He with the Nijmegen soft-core potentials
The -- coupling in
He is studied with the [ + +
] + [ + + ] + [ + + ] model,
where the particle is assumed as a frozen core. We use the Nijmegen
soft-core potentials, NSC97e and NSC97f, for the valence baryon-baryon part,
and the phenomenological potentials for the parts (=,
, and ). We find that the calculated of He for NSC97e and NSC97f are,
respectively, 0.6 and 0.4 MeV in the full coupled-channel calculation, the
results of which are about half in comparison with the experimental data,
MeV.
Characteristics of the sector in the NSC97 potentials are discussed in
detail.Comment: 18 pages, 4 figure
In vivo assessment of drug efficacy against Plasmodium falciparum malaria: duration of follow-up.
To determine the optimum duration of follow-up for the assessment of drug efficacy against Plasmodium falciparum malaria, 96 trial arms from randomized controlled trials (RCTs) with follow-up of 28 days or longer that were conducted between 1990 and 2003 were analyzed. These trials enrolled 13,772 patients, and participating patients comprised 23% of all patients enrolled in RCTs over the past 40 years; 61 (64%) trial arms were conducted in areas where the rate of malaria transmission was low, and 58 (50%) trial arms were supported by parasite genotyping to distinguish true recrudescences from reinfections. The median overall failure rate reported was 10% (range, 0 to 47%). The widely used day 14 assessment had a sensitivity of between 0 and 37% in identifying treatment failures and had no predictive value. Assessment at day 28 had a sensitivity of 66% overall (28 to 100% in individual trials) but could be used to predict the true failure rate if either parasite genotyping was performed (r(2) = 0.94) or if the entomological inoculation rate was known. In the assessment of drug efficacy against falciparum malaria, 28 days should be the minimum period of follow-up
Faddeev calculations for the A=5,6 Lambda-Lambda hypernuclei
Faddev calculations are reported for Lambda-Lambda-5H, Lambda-Lambda-5He and
Lambda-Lambda-6He in terms of two Lambda hyperons plus the respective nuclear
clusters, using Lambda-Lambda central potentials considered in past non-Faddeev
calculations of Lambda-Lambda-6He. The convergence with respect to the
partial-wave expansion is studied, and comparison is made with some of these
Lambda-Lambda hypernuclear calculations. The Lambda-Lambda Xi-N mixing
effect is briefly discussed.Comment: submitted for publicatio
Atomic Resonance and Scattering
Contains research objectives, summary of research and reports on three research projects.U. S. Navy (Office of Naval Research) under Contract N00014-67-A-0204-0006Joint Services Electronics Programs (U. S. Army, U.S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E
- …
