676 research outputs found
Optimization of quasi-normal eigenvalues for Krein-Nudelman strings
The paper is devoted to optimization of resonances for Krein strings with
total mass and statical moment constraints. The problem is to design for a
given a string that has a resonance on the line \alpha + \i
\R with a minimal possible modulus of the imaginary part. We find optimal
resonances and strings explicitly.Comment: 9 pages, these results were extracted in a slightly modified form
from the earlier e-print arXiv:1103.4117 [math.SP] following an advise of a
journal's refere
Oblique frozen modes in periodic layered media
We study the classical scattering problem of a plane electromagnetic wave
incident on the surface of semi-infinite periodic stratified media
incorporating anisotropic dielectric layers with special oblique orientation of
the anisotropy axes. We demonstrate that an obliquely incident light, upon
entering the periodic slab, gets converted into an abnormal grazing mode with
huge amplitude and zero normal component of the group velocity. This mode
cannot be represented as a superposition of extended and evanescent
contributions. Instead, it is related to a general (non-Bloch) Floquet
eigenmode with the amplitude diverging linearly with the distance from the slab
boundary. Remarkably, the slab reflectivity in such a situation can be very
low, which means an almost 100% conversion of the incident light into the
axially frozen mode with the electromagnetic energy density exceeding that of
the incident wave by several orders of magnitude. The effect can be realized at
any desirable frequency, including optical and UV frequency range. The only
essential physical requirement is the presence of dielectric layers with proper
oblique orientation of the anisotropy axes. Some practical aspects of this
phenomenon are considered.Comment: text and 9 figure
Immittance Matching for Multi-dimensional Open-system Photonic Crystals
An electromagnetic (EM) Bloch wave propagating in a photonic crystal (PC) is
characterized by the immittance (impedance and admittance) of the wave. The
immittance is used to investigate transmission and reflection at a surface or
an interface of the PC. In particular, the general properties of immittance are
useful for clarifying the wave propagation characteristics. We give a general
proof that the immittance of EM Bloch waves on a plane in infinite one- and
two-dimensional (2D) PCs is real when the plane is a reflection plane of the PC
and the Bloch wavevector is perpendicular to the plane. We also show that the
pure-real feature of immittance on a reflection plane for an infinite
three-dimensional PC is good approximation based on the numerical calculations.
The analytical proof indicates that the method used for immittance matching is
extremely simplified since only the real part of the immittance function is
needed for analysis without numerical verification. As an application of the
proof, we describe a method based on immittance matching for qualitatively
evaluating the reflection at the surface of a semi-infinite 2D PC, at the
interface between a semi-infinite slab waveguide (WG) and a semi-infinite 2D PC
line-defect WG, and at the interface between a semi-infinite channel WG and a
semi-infinite 2D PC slab line-defect WG.Comment: 8 pages, 6 figure
Ultrafast nonlocal control of spontaneous emission
Solid-state cavity quantum electrodynamics systems will form scalable nodes
of future quantum networks, allowing the storage, processing and retrieval of
quantum bits, where a real-time control of the radiative interaction in the
cavity is required to achieve high efficiency. We demonstrate here the dynamic
molding of the vacuum field in a coupled-cavity system to achieve the ultrafast
nonlocal modulation of spontaneous emission of quantum dots in photonic crystal
cavities, on a timescale of ~200 ps, much faster than their natural radiative
lifetimes. This opens the way to the ultrafast control of semiconductor-based
cavity quantum electrodynamics systems for application in quantum interfaces
and to a new class of ultrafast lasers based on nano-photonic cavities.Comment: 15 pages, 4 figure
Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling
High-bit-rate nanocavity-based single photon sources in the 1,550-nm telecom
band are challenges facing the development of fibre-based long-haul quantum
communication networks. Here we report a very fast single photon source in the
1,550-nm telecom band, which is achieved by a large Purcell enhancement that
results from the coupling of a single InAs quantum dot and an InP photonic
crystal nanocavity. At a resonance, the spontaneous emission rate was enhanced
by a factor of 5 resulting a record fast emission lifetime of 0.2 ns at 1,550
nm. We also demonstrate that this emission exhibits an enhanced anti-bunching
dip. This is the first realization of nanocavity-enhanced single photon
emitters in the 1,550-nm telecom band. This coupled quantum dot cavity system
in the telecom band thus provides a bright high-bit-rate non-classical single
photon source that offers appealing novel opportunities for the development of
a long-haul quantum telecommunication system via optical fibres.Comment: 16 pages, 4 figure
A picogram and nanometer scale photonic crystal opto-mechanical cavity
We describe the design, fabrication, and measurement of a cavity
opto-mechanical system consisting of two nanobeams of silicon nitride in the
near-field of each other, forming a so-called "zipper" cavity. A photonic
crystal patterning is applied to the nanobeams to localize optical and
mechanical energy to the same cubic-micron-scale volume. The picrogram-scale
mass of the structure, along with the strong per-photon optical gradient force,
results in a giant optical spring effect. In addition, a novel damping regime
is explored in which the small heat capacity of the zipper cavity results in
blue-detuned opto-mechanical damping.Comment: 15 pages, 4 figure
Development of a LAMP assay for detection of Leishmania infantum infection in dogs using conjunctival swab samples
Background: Leishmania infantum infections in dogs play a crucial role in the transmission of pathogens causing visceral leishmaniasis to humans in the Gansu province, northwest China. To be able to control zoonotic transmission of the parasite to humans, a non-invasive loop-mediated isothermal amplification (LAMP) assay to specifically detect L. infantum infections in dogs was developed. Methods: The primers used in the LAMP assay were designed to target kinetoplast DNA minicircle sequences of the L. infantum isolate MCAN/CN/90/SC and tested using DNA isolated from promastigotes of different Leishmania species. The LAMP assay was evaluated with conjunctional swab samples obtained from 111 and 33 dogs living in an endemic and a non-endemic region of zoonotic visceral leishmaniasis in the Gansu province, respectively. The LAMP assay was also compared with conventional PCR, ELISA and microscopy using conjunctional swab, serum and bone marrow samples from the dogs, respectively. Results: The LAMP assay detected 1 fg of L. infantum DNA purified from cultured promastigotes which was 10-fold more sensitive than a conventional PCR test using Leishmania genus-specific primers. No cross reaction was observed with DNA isolated from promastigotes of L. donovani, L. major, L. tropica, and L. braziliensis, and the L. infantum reference strain MHOM/TN/80/IPT1. The L. infantum-positive rates obtained for field-collected samples were 61.3%, 58.6%, 40.5% and 10.8% by LAMP, PCR, ELISA and microscopy, respectively. As only one out of the 33 samples from control dogs from the non-endemic region of zoonotic visceral leishmaniasis was positive by the LAMP assay and the PCR test, the observed true negative rate (specificity) was 97% for both methods. Conclusion: This study has shown that the non-invasive, conjunctional swab-based LAMP assay developed was more sensitive in the detection of leishmaniasis in dogs than PCR, ELISA and microscopy. The findings indicate that the LAMP assay is a sensitive and specific method for the field surveillance of domestic dogs, particularly of asymptomatic canines, in ZVL-endemic areas in western China
Optomagnetic composite medium with conducting nanoelements
A new type of metal-dielectric composites has been proposed that is
characterised by a resonance-like behaviour of the effective permeability in
the infrared and visible spectral ranges. This material can be referred to as
optomagnetic medium. The analytical formalism developed is based on solving the
scattering problem for considered inclusions with impedance boundary condition,
which yields the current and charge distributions within the inclusions. The
presence of the effective magnetic permeability and its resonant properties
lead to novel optical effects and open new possible applications.Comment: 48 pages, 13 figures. accepted to Phys. Rev. B; to appear vol. 66,
200
All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators
We review our recent work on tunable, ultrahigh quality factor
whispering-gallery-mode bottle microresonators and highlight their applications
in nonlinear optics and in quantum optics experiments. Our resonators combine
ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume,
and near-lossless fiber coupling, with a simple and customizable mode structure
enabling full tunability. We study, theoretically and experimentally, nonlinear
all-optical switching via the Kerr effect when the resonator is operated in an
add-drop configuration. This allows us to optically route a single-wavelength
cw optical signal between two fiber ports with high efficiency. Finally, we
report on progress towards strong coupling of single rubidium atoms to an
ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B.
Changes according to referee suggestions: minor corrections to some figures
and captions, clarification of some points in the text, added references,
added new paragraph with results on atom-resonator interactio
Coherent optical wavelength conversion via cavity-optomechanics
We theoretically propose and experimentally demonstrate coherent wavelength
conversion of optical photons using photon-phonon translation in a
cavity-optomechanical system. For an engineered silicon optomechanical crystal
nanocavity supporting a 4 GHz localized phonon mode, optical signals in a 1.5
MHz bandwidth are coherently converted over a 11.2 THz frequency span between
one cavity mode at wavelength 1460 nm and a second cavity mode at 1545 nm with
a 93% internal (2% external) peak efficiency. The thermal and quantum limiting
noise involved in the conversion process is also analyzed, and in terms of an
equivalent photon number signal level are found to correspond to an internal
noise level of only 6 and 4x10-3 quanta, respectively.Comment: 11 pages, 7 figures, appendi
- …
